Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14440, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896835

RESUMO

PURPOSE: CBCT-guided online-adaptive radiotherapy (oART) systems have been made possible by using artificial intelligence and automation to substantially reduce treatment planning time during on-couch adaptive sessions. Evaluating plans generated during an adaptive session presents significant challenges to the clinical team as the planning process gets compressed into a shorter window than offline planning. We identified MU variations up to 30% difference between the adaptive plan and the reference plan in several oART sessions that caused the clinical team to question the accuracy of the oART dose calculation. We investigated the cause of MU variation and the overall accuracy of the dose delivered when MU variations appear unnecessarily large. METHODS: Dosimetric and adaptive plan data from 604 adaptive sessions of 19 patients undergoing CBCT-guided oART were collected. The analysis included total MU per fraction, planning target volume (PTV) and organs at risk (OAR) volumes, changes in PTV-OAR overlap, and DVH curves. Sessions with MU greater than two standard deviations from the mean were reoptimized offline, verified by an independent calculation system, and measured using a detector array. RESULTS: MU variations relative to the reference plan were normally distributed with a mean of -1.0% and a standard deviation of 11.0%. No significant correlation was found between MU variation and anatomic changes. Offline reoptimization did not reliably reproduce either reference or on-couch total MUs, suggesting that stochastic effects within the oART optimizer are likely causing the variations. Independent dose calculation and detector array measurements resulted in acceptable agreement with the planned dose. CONCLUSIONS: MU variations observed between oART plans were not caused by any errors within the oART workflow. Providers should refrain from using MU variability as a way to express their confidence in the treatment planning accuracy. Clinical decisions during on-couch adaptive sessions should rely on validated secondary dose calculations to ensure optimal plan selection.

2.
Cureus ; 16(9): e68990, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39385924

RESUMO

This case report addresses the complex management of a patient with concurrent prostate cancer, inflammatory bowel disease (IBD), and bilateral total hip arthroplasty, and demonstrates the efficacy of cone-beam computed tomography (CBCT)-guided daily online adaptive radiation therapy (oART) and advanced imaging techniques in overcoming significant treatment challenges. A 68-year-old male with a history of ulcerative colitis and bilateral hip prostheses was diagnosed with high-risk prostate cancer. Conventional radiation therapy modalities, including external beam radiation therapy (EBRT), proton therapy, and magnetic resonance imaging (MRI)-based oART, faced limitations because of the patient's comorbidities and metallic implants. Daily oART, using the Ethos platform (Varian Medical Systems, Palo Alto, CA, USA) with HyperSight™ metal artifact reduction (MAR) imaging, was employed to enhance treatment efficacy. The daily oART treatment on the Ethos platform facilitated the successful delivery of a therapeutic dose while sparing healthy tissues, and the treatment was successful without an IBD flare-up. Daily oART also optimized the target dose while best sparing the critical organs based on the patient's daily anatomy. The HyperSight MAR algorithm significantly reduced imaging artifacts caused by the hip prostheses, enabling accurate identification of the prostate, bladder, and surrounding organs. The oART workflow was delivered without technical challenges, with a total session time of 20 to 30 minutes, similar to our typical prostate patients without hip implants. Despite the complex anatomy and comorbid conditions, the treatment plan met all organ-at-risk constraints and delivered the prescribed dose to the target volumes. Ethos oART with HyperSight provided an effective solution for treating a patient with concurrent prostate cancer, IBD, and bilateral hip arthroplasty. The patient's case was successfully treated without complications, despite such challenging clinical and technical scenarios.

3.
Cancers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539540

RESUMO

Radiotherapy, a crucial technique in cancer therapy, has traditionally relied on the premise of largely unchanging patient anatomy during the treatment course and encompassing uncertainties by target margins. This review introduces adaptive radiotherapy (ART), a notable innovation that addresses anatomy changes and optimizes the therapeutic ratio. ART utilizes advanced imaging techniques such as CT, MRI, and PET to modify the treatment plan based on observed anatomical changes and even biological changes during the course of treatment. The narrative review provides a comprehensive guide on ART for healthcare professionals and trainees in radiation oncology and anyone else interested in the topic. The incorporation of artificial intelligence in ART has played a crucial role in improving effectiveness, particularly in contour segmentation, treatment planning, and quality assurance. This has expedited the process to render online ART feasible, lowered the burden for radiation oncology practitioners, and enhanced the precision of dynamically personalized treatment. Current technical and clinical progress on ART is discussed in this review, highlighting the ongoing development of imaging technologies and AI and emphasizing their contribution to enhancing the applicability and effectiveness of ART.

4.
Clin Case Rep ; 12(5): e8868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756618

RESUMO

Key Clinical Message: A patient presented with cardiogenic shock, requiring the implantation of a left ventricular assist device (LVAD), and acute myeloblastic leukemia. This necessitated total body irradiation (TBI) while balancing dose reduction to the LVAD components to avoid potential radiation damage. Here we outline our treatment approach and dose estimates to the LVAD. Abstract: This case report discusses the delivery of TBI to a patient with an LVAD. This treatment required radiation-dose determinations and consequential reductions for the heart, LVAD, and an external controller connected to the LVAD. The patient was treated using a traditional 16MV anterior posterior (AP)/posterior anterior (PA) technique at a source-to-surface-distance of 515 cm for 400 cGy in two fractions. A 3 cm thick Cerrobend block was placed on the beam spoiler to reduce dose to the heart and LVAD to 150 cGy. The external controller was placed in a 1 cm thick acrylic box to reduce neutron dose and positioned as far from the treatment fields as achievable. In vivo measurements were made using optically stimulated luminescence dosimeters (OSLDs) placed inside the box at distances of 2 cm, 8.5 cm, and 14 cm from the field edge, and on the patient along the central axis and centered behind the LVAD block. Further ion chamber measurements were made using a solid water phantom to more accurately estimate the dose delivered to the LVAD. Neutron dose measurements were also conducted. The total estimated dose to the controller ranged from 135.3 cGy to 91.5 cGy. The LVAD block reduced the surface dose to the patient to 271.6 cGy (68.1%). The block transmission factors of the 3 cm Cerrobend block measured in the phantom were 45% at 1 cm depth and decreased asymptotically to around 30% at 3 cm depth. Applying these transmission factors to the in vivo measurements yielded a dose of 120 cGy to the implanted device. The neutron dose the LVAD region is estimated around 0.46 cGy. Physical limitations of the controller made it impossible to completely avoid dose. Shielding is recommended. The block had limited dose reduction to the surface, due to secondary particles, but appropriately reduced the dose at 3 cm and beyond. More research on LVADs dose limits would be beneficial.

5.
Radiat Oncol ; 19(1): 19, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326813

RESUMO

BACKGROUND: To compare the dosimetric quality of three widely used techniques for LINAC-based single-isocenter multi-target multi-fraction stereotactic radiosurgery (fSRS) with more than 20 targets: dynamic conformal arc (DCA) in BrainLAB Multiple Metastases Elements (MME) module and volumetric modulated arc therapy (VMAT) using RapidArc (RA) and HyperArc (HA) in Varian Eclipse. METHODS: Ten patients who received single-isocenter fSRS with 20-37 targets were retrospectively replanned using MME, RA, and HA. Various dosimetric parameters, such as conformity index (CI), Paddick CI, gradient index (GI), normal brain dose exposures, maximum organ-at-risk (OAR) doses, and beam-on times were extracted and compared among the three techniques. Wilcoxon signed-rank test was used for statistical analysis. RESULTS: All plans achieved the prescribed dose coverage goal of at least 95% of the planning target volume (PTV). HA plans showed superior conformity compared to RA and MME plans. MME plans showed superior GI compared to RA and HA plans. RA plans resulted in significantly higher low and intermediate dose exposure to normal brain compared to HA and MME plans, especially for lower doses of ≥ 8Gy and ≥ 5Gy. No significant differences were observed in the maximum dose to OARs among the three techniques. The beam-on time of MME plans was about two times longer than RA and HA plans. CONCLUSIONS: HA plans achieved the best conformity, while MME plans achieved the best dose fall-off for LINAC-based single-isocenter multi-target multi-fraction SRS with more than 20 targets. The choice of the optimal technique should consider the trade-offs between dosimetric quality, beam-on time, and planning effort.


Assuntos
Neoplasias Encefálicas , Endrin/análogos & derivados , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundário , Dosagem Radioterapêutica , Estudos Retrospectivos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Med Phys ; 47(11): 5906-5918, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32996168

RESUMO

PURPOSE: Recently a novel radiochromic sheet dosimeter, termed as PRESAGE sheets, consisting of leuco crystal violet dye and radical initiator had been developed and characterized. This study examines the dosimeter's temporal stability and storage temperature dependence postirradiation, and its applicability for dose verification in three dimensions (3D) as a stack dosimeter. METHODS: PRESAGE sheets were irradiated using 6 MV photons at a dose range of 0-20 Gy with the change in optical density measured using a flatbed scanner. Following their irradiation, PRESAGE sheets were stored in different temperature environments (-18 °C, 4 °C, and 22 °C) and scanned at different time points, ranging from 1 to 168 h postirradiation, to track changes in measured signal and linearity of dose response. Multiple PRESAGE sheets were bound together to create a 12 × 13 × 8.7 cm3 film stack, with EBT3 film inserted between the sheets in the central region of the stack, that was treated using a clinical VMAT plan. Based on the results from the time and storage temperature study, two-dimensional (2D) relative dose distribution measurements in PRESAGE were acquired promptly following irradiation at selected planes in the coronal, sagittal, and axial orientation of the film stack and compared to the treatment planning system calculations in their respective axes. Dose distribution measurements on the coronal axis of the stack dosimeter were also independently verified using EBT3 film. RESULTS: The dose response was observed to be linear (R2 > 0.995) with sheets stored in colder temperatures retaining their signal and dose response sensitivity for extended periods postirradiation. Sheets stored in 22 °C environment should be measured within an hour postirradiation. Sheets stored in a 4 °C and -18 °C environment can be scanned up to 20- and 72 h postirradiation, respectively, while preserving the integrity of their dose response sensitivity and linearity of dose response within a mean absolute percent error of 2.0%. For instance, at 20 h postirradiation the dose response sensitivity for sheets stored in a -18 °C, 4 °C, and 22 °C temperature environment was measured to be 97%, 91%, and 77% of their original values measured within an hour postirradiation, respectively. The 2D gamma pass rate for central slices exceed 95% for PRESAGE film stack compared with treatment planning system on selected planes in the axial, coronal, and sagittal orientation and EBT3 film in the coronal orientation using a 2D gamma index of 2%/2mm. The gamma pass rate in comparing the calculated dose distribution with the measured dose distribution from PRESAGE-LCV was observed to decrease in sheets scanned at later elapsed times postirradiation. In one example, the gamma pass rate for 2%/2mm criteria in the coronal plane was observed to decrease from 97.7% pass rate when scanned within an hour postirradiation to 92.1% pass rate when scanned at 20 h postirradiation under room temperature conditions. CONCLUSIONS: This is the first study to demonstrate that the temporal stability of PRESAGE sheets can be enhanced through its storage in colder temperature environments postirradiation and that sheets as a film stack dosimeter hold promise for precise relative dose distribution measurements in 3D where advanced optical CT is unavailable.


Assuntos
Fótons , Dosímetros de Radiação , Dosimetria Fotográfica , Radiometria , Temperatura
7.
Med Phys ; 46(10): 4333-4339, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359438

RESUMO

PURPOSE: Cone beam computed tomography (CBCT) imaging has been implemented on the Leksell Gamma Knife® Icon™ for assessing patient positioning in mask-based Gamma Knife radiosurgery. The purpose of this study was to evaluate the performance of the CBCT-based patient positioning system as a tool for frameless Gamma Knife radiosurgery. METHODS: Daily quality assurance (QA) CBCT precision test results from a 12-month period were analyzed for the geometric accuracy and the stability of the imager. The performance of the image acquisition module and the image registration algorithm was evaluated using an anthropomorphic head phantom (CIRS Inc., Norfolk, VA) and a XYZR axis manual positioning stage (TOAUTO Inc., Guangdong, China). The head phantom was fixed on a mask adaptor and manually translated in the X, Y, Z directions or rotated around the X, Y, Z axes in the range of ±10 mm or ±10º. A CBCT scan was performed after each manual position setup followed by an image registration to the reference scan. To assess the overall setup uncertainties in fractionated treatment, two cylindrical Presage phantoms (Heuris Inc., Skillman, NJ) of 15 cm diameter and 10 cm height were irradiated with identical prescription dose and shot placement following standard mask-based treatment workflow according to two different fraction schedules: a single fraction treatment of 7.5 Gy and a 5-fraction treatment with 1.5 Gy per fraction. RESULTS: The averaged vector deviations of the four marks from their preset values are 0.087, 0.085, 0.095, and 0.079 mm from the 212 daily QA tests. The averaged displacements in the X, Y, Z coordinates and the pitch, yaw, roll angles from the image registration tests are 0.23, 0.27, 0.14, 0.32º, 0.19º, 0.31º from the manual setup. The corresponding maximum differences are 0.41, 0.33, 0.29 mm, 0.45º, 0.31º, and 0.43º, respectively. Compared to the treatment plan using the 2% & 1 mm criteria, the averaged 2D Gamma passing rate is 98.25% for the measured dose distribution from the Presage phantom with 1-fraction irradiation and 95.12% for the 5-fraction irradiation. The averaged Gamma passing rates are 99.53% and 98.16% for the 1-fraction and 5-fraction irradiations using the 2% & 2 mm criteria. CONCLUSIONS: The CBCT imager and the image registration algorithm can reproduce phantom position with <0.5 mm/0.5º uncertainty. A systematic contribution from the interfraction phantom repositioning procedure was observed in the Gamma analysis over the irradiated volumes of two end-to-end test phantoms.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Posicionamento do Paciente/métodos , Radiocirurgia , Humanos , Processamento de Imagem Assistida por Computador , Controle de Qualidade
8.
Nucleus (La Habana) ; (45): 36-32, ene.-jun. 2009. ilus, graf
Artigo em Inglês | LILACS | ID: lil-738920

RESUMO

RESUMEN El daño radiacional en términos de desplazamientos atómicos en un típico detector de CZT empleado en aplicaciones de imagenología médica fue estudiado utilizando el método estadístico de Monte Carlo. Se tuvieron en cuenta todas las características estructurales y geométricas del detector, así como las diferentes energías de los fotones usualmente empleados en la aplicación. Considerando la aproximación clásica de Mott-McKinley-Feshbach se calcularon las secciones eficaces de desplazamiento, así como el número de desplazamientos por átomo para cada especie atómica presente en el material y para cada energía considerada de los fotones. Estos resultados se analizan y comparan entre sí y finalmente se establece la comparación entre el daño radiacional que tiene lugar en el detector de CZT con el que se manifiesta en un detector similar, pero fabricado con otros materiales semiconductores.


ABSTRACT Radiation damage in terms of atomic displacements in a typical CZT detector used in medical imaging applications was studied using the Monte Carlo statistical method. All detector structural and geometric features as well as different energies of the photons usually used in the application were taken into account. Considering the Mott-McKinley-Feshbach classical approach, effective cross sections of the displacements were calculated, including the number of displacements per atom for each atomic species present in the material and each photon energy considered. These results are analyzed and compared. Finally, the radiation damage on CZT detector is compared to that calculated in a similar detector manufactured with other semiconducting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA