Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36871815

RESUMO

Hibernating bears and rodents have evolved mechanisms to prevent disuse osteoporosis during the prolonged physical inactivity that occurs during hibernation. Serum markers and histological indices of bone remodeling in bears indicate reduced bone turnover during hibernation, which is consistent with organismal energy conservation. Calcium homeostasis is maintained by balanced bone resorption and formation since hibernating bears do not eat, drink, urinate, or defecate. Reduced and balanced bone remodeling protect bear bone structure and strength during hibernation, unlike the disuse osteoporosis that occurs in humans and other animals during prolonged physical inactivity. Conversely, some hibernating rodents show varying degrees of bone loss such as osteocytic osteolysis, trabecular loss, and cortical thinning. However, no negative effects of hibernation on bone strength in rodents have been found. More than 5000 genes in bear bone tissue are differentially expressed during hibernation, highlighting the complexity of hibernation induced changes in bone. A complete picture of the mechanisms that regulate bone metabolism in hibernators still alludes us, but existing data suggest a role for endocrine and paracrine factors such as cocaine- and amphetamine-regulated transcript (CART) and endocannabinoid ligands like 2-arachidonoyl glycerol (2-AG) in decreasing bone remodeling during hibernation. Hibernating bears and rodents evolved the capacity to preserve bone strength during long periods of physical inactivity, which contributes to their survival and propagation by allowing physically activity (foraging, escaping predators, and mating) without risk of bone fracture following hibernation. Understanding the biological mechanisms regulating bone metabolism in hibernators may inform novel treatment strategies for osteoporosis in humans.


Assuntos
Hibernação , Osteoporose , Ursidae , Humanos , Animais , Densidade Óssea/fisiologia , Osso e Ossos/metabolismo , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Mamíferos , Hibernação/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-31783174

RESUMO

Hibernators have adapted a physiological mechanism allowing them to undergo long periods of inactivity without experiencing bone loss. However, the biological mechanisms that prevent bone loss are unknown. Previous studies found meaningful changes, between active and hibernating marmots, in the endocannabinoid system of many tissues, including bone. Cannabinoid receptors (CB1 and CB2) have divergent localization in bone. CB1 is predominately found on sympathetic nerve terminals, while CB2 is more abundant on bone cells and their progenitors. This study aimed to determine the contribution of innervation on endocannabinoid regulation of bone properties in hibernating (during torpor) and non-hibernating yellow-bellied marmots. Neurectomy, a model for disuse osteoporosis, was performed unilaterally in both hibernating and active marmots. Endocannabinoid concentrations were measured in bone marrow, cortical, and trabecular regions from fourth metatarsals of both hindlimbs using microflow chromatography-tandem quadrupole mass spectrometry. Trabecular bone architectural properties of fifth metatarsals were evaluated using micro-computed tomography. There were ligand-specific increases with neurectomy in active, but not hibernating, marmots. Trabecular bone architectural properties were not affected by neurectomy during hibernation, but did show some minor negative changes in active marmots. These findings suggest protection from bone loss in hibernating rodents is peripherally rather than centrally regulated. Furthermore, findings suggest even active marmots with normal metabolism are partially protected from disuse induced bone loss compared to laboratory rodents. Understanding the mechanism hibernators use to maintain bone density may guide development for novel bone loss prevention therapies.


Assuntos
Endocanabinoides/metabolismo , Marmota/fisiologia , Animais , Densidade Óssea , Reabsorção Óssea/metabolismo , Denervação , Feminino , Hibernação/fisiologia , Masculino , Marmota/metabolismo
3.
J Musculoskelet Neuronal Interact ; 18(3): 284-291, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179205

RESUMO

August Krogh was a comparative physiologist who used frogs, guinea pigs, cats, dogs, and horses in his research that led to his Nobel Prize on muscle physiology. His idea to choose the most relevant organism to study problems in physiology has become known as Krogh's principle. Indeed, many important discoveries in physiology have been made using naturally occurring animal models. However, the majority of research today utilizes laboratory mouse and rat models to study problems in physiology. This paper discusses how Krogh's principle can be invoked in musculoskeletal research as a complementary approach to using standard laboratory rodent models for solving problems in musculoskeletal physiology. This approach may increase our ability to treat musculoskeletal diseases clinically. For example, it has been noted that progress in osteogenesis imperfecta research has been limited by the absence of a naturally occurring animal model. Several examples of naturally occurring animal models are discussed including osteoarthritis and osteosarcoma in dogs, resistance to disuse induced bone and skeletal muscle loss in mammalian hibernators, and bone phenotypic plasticity in fish lacking osteocytes. Many musculoskeletal diseases (e.g., osteoarthritis) occur naturally in companion animals, which may provide clues on etiology and progression of musculoskeletal diseases and accelerate the development of pharmaceutical therapies for humans.


Assuntos
Músculo Esquelético/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Adaptação Fisiológica/fisiologia , Animais , Osso e Ossos/fisiologia , Cartilagem Articular/fisiologia
4.
Physiology (Bethesda) ; 30(1): 17-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25559152

RESUMO

Bone evolved to serve many mechanical and physiological functions. Osteocytes and bone remodeling first appeared in the dermal skeleton of fish, and subsequently adapted to various challenges in terrestrial animals occupying diverse environments. This review discusses the physiology of bone and its role in mechanical and calcium homeostases from an evolutionary perspective. We review how bone physiology responds to changing environments and the adaptations to unique and extreme physiological conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Osso e Ossos/metabolismo , Meio Ambiente , Osteócitos/citologia , Animais , Osso e Ossos/patologia , Humanos , Estresse Mecânico
5.
Acta Biomater ; 174: 258-268, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072223

RESUMO

The horns of bighorn sheep rams are permanent cranial appendages used for high energy head-to-head impacts during interspecific combat. The horns attach to the underlying bony horncore by a layer of interfacial tissue that facilitates load transfer between the impacted horn and underlying horncore, which has been shown to absorb substantial energy during head impact. However, the morphology and mechanical properties of the interfacial tissue were previously unknown. Histomorphometry was used to quantify the interfacial tissue composition and morphology and lap-shear testing was used to quantify its mechanical properties. Histological analyses revealed the interfacial tissue is a complex network of collagen and keratin fibers, with collagen being the most abundant protein. Sharpey's fibers provide strong attachment between the interfacial tissue and horncore bone. The inner horn surface displayed microscopic porosity and branching digitations which increased the contact surface with the interfacial tissue by approximately 3-fold. Horn-horncore samples tested by lap-shear loading failed primarily at the horn surface, and the interfacial tissue displayed non-linear strain hardening behavior similar to other soft tissues. The elastic properties of the interfacial tissue (i.e., low- and high-strain shear moduli) were comparable to previously measured values for the equine laminar junction. The interfacial tissue contact surface was positively correlated with the interfacial tissue shear strength (1.23 ± 0.21 MPa), high-strain shear modulus (4.5 ± 0.7 MPa), and strain energy density (0.38 ± 0.07 MJ/m3). STATEMENT OF SIGNIFICANCE: The bony horncore in bighorn sheep rams absorbs energy to reduce brain cavity accelerations and mitigate brain injury during head butting. The interfacial zone between the horn and horncore transfers energy from the impacted horn to the energy absorbing horncore but has been largely neglected in previous models of bighorn sheep ramming since interfacial tissue properties were previously unknown. This study quantified the morphology and mechanical properties of the horn-horncore interfacial tissue to better understand structure-property relationships that contribute to energy transfer during ramming. Results from this study will improve models of bighorn sheep ramming used to study mechanisms of brain injury mitigation and may inspire novel materials and structures for brain injury prevention in humans.


Assuntos
Lesões Encefálicas , Cornos , Carneiro da Montanha , Humanos , Animais , Masculino , Cavalos , Ovinos , Cornos/anatomia & histologia , Crânio , Colágeno/metabolismo
6.
Am J Phys Anthropol ; 151(2): 230-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23633395

RESUMO

Studies of secondary osteons in ribs have provided a great deal of what is known about remodeling dynamics. Compared with limb bones, ribs are metabolically more active and sensitive to hormonal changes, and receive frequent low-strain loading. Optimization for calcium exchange in rib osteons might be achieved without incurring a significant reduction in safety factor by disproportionally increasing central canal size with increased osteon size (positive allometry). By contrast, greater mechanical loads on limb bones might favor reducing deleterious consequences of intracortical porosity by decreasing osteon canal size with increased osteon size (negative allometry). Evidence of this metabolic/mechanical dichotomy between ribs and limb bones was sought by examining relationships between Haversian canal surface area (BS, osteon Haversian canal perimeter, HC.Pm) and bone volume (BV, osteonal wall area, B.Ar) in a broad size range of mature (quiescent) osteons from adult human limb bones and ribs (modern and medieval) and various adult and subadult non-human limb bones and ribs. Reduced major axis (RMA) and least-squares (LS) regressions of HC.Pm/B.Ar data show that rib and limb osteons cannot be distinguished by dimensional allometry of these parameters. Although four of the five rib groups showed positive allometry in terms of the RMA slopes, nearly 50% of the adult limb bone groups also showed positive allometry when negative allometry was expected. Consequently, our results fail to provide clear evidence that BS/BV scaling reflects a rib versus limb bone dichotomy whereby calcium exchange might be preferentially enhanced in rib osteons.


Assuntos
Osso e Ossos/anatomia & histologia , Ósteon/anatomia & histologia , Adulto , Idoso , Animais , Antropologia Física , Antropometria , Remodelação Óssea , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade
7.
Bioinspir Biomim ; 18(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652719

RESUMO

Male bighorn sheep (Ovis canadensis) participate in seasonal ramming bouts that can last for hours, yet they do not appear to suffer significant brain injury. Previous work has shown that the keratin-rich horn and boney horncore may play an important role in mitigating brain injury by reducing brain cavity accelerations through energy dissipating elastic mechanisms. However, the extent to which specific horn shapes (such as the tapered spiral of bighorn sheep) may reduce accelerations post-impact remains unclear. Thus, the goals of this work were to (a) quantify bighorn sheep horn shape, particularly the cross-sectional areal properties related to bending that largely dictate post-impact deformations, and (b) investigate the effects of different tapered horn shapes on reducing post-impact accelerations in an impact model with finite element analysis. Cross-sectional areal properties indicate bighorn sheep horns have a medial-lateral bending preference at the horn tip (p= 0.006), which is likely to dissipate energy through medial-lateral horn tip oscillations after impact. Finite element modeling showed bighorn sheep native horn geometry reduced the head injury criterion (HIC15) by 48% compared to horns with cross-sections rotated by 90° to have a cranial-caudal bending preference, and by 125% compared to a circular tapered spiral model. These results suggest that the tapered spiral horn shape of bighorn sheep is advantageous for dissipating energy through elastic mechanisms following an impact. These findings can be used to broadly inform the design of improved safety equipment and impact systems.


Assuntos
Lesões Encefálicas , Traumatismos Craniocerebrais , Cornos , Carneiro da Montanha , Masculino , Animais , Estudos Transversais
8.
Acta Biomater ; 166: 419-429, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164299

RESUMO

Velar bone is the material that fills the horncore of bighorn sheep rams. The architectural dimensions of velar bone are orders of magnitude larger than trabecular bone, and velae are more sail-like compared to strut-like trabeculae. Velar bone is important for energy absorption and reduction of brain cavity accelerations during high energy head impacts, but velar bone material properties were previously unknown. It was hypothesized that velar bone tissue would have properties that are beneficial for increased energy absorption at the material level. Solid velar bone beams were tested using dynamic mechanical analysis and three-point bending to quantify mechanical properties. Additionally, the porosity, osteon population density, and mineral content of the solid velar sails were quantified. The velar bone damping factor (∼0.03 - 0.06) and modulus of toughness (3.9 ± 0.4 MJ/m3) were lower than other mammalian cortical bone tissues. The solid bony sails have a bending modulus (8.6 ± 0.5 GPa) that lies within the range of bending moduli values previously reported for individual trabecular struts and cortical bone tissue. The solid velar bone sails had porosity (6.7 ± 0.9 %) and bone mineral content (66 ± 1 %) in the range of cortical bone values. Interestingly, velar sails contained osteons, which are rarely found in trabecular struts. The velar bone osteon population density (5.8 ± 0.9 osteons/mm2) is in the low end of the range of values reported for cortical bone in other mammals. STATEMENT OF SIGNIFICANCE: Bighorn sheep rams sustain high energy head impacts during intraspecific combat without overt signs of brain injury. Previous studies have shown that the bony horncore plays a critical role in energy absorption and reduction of brain cavity accelerations post impact, which has implications for concussion prevention in humans. However, the material properties of the horncore velar bone were previously unknown. This study quantified the material properties and structure-property relationships of the horncore velar bone at the tissue level. Results from this study will improve our understanding of how bighorn sheep mitigate brain injury during head-to-head impacts and may inspire the design of novel materials for energy absorption applications (i.e., helmets materials that reduce concussion occurrence in humans).


Assuntos
Lesões Encefálicas , Carneiro da Montanha , Humanos , Animais , Masculino , Ovinos , Crânio , Densidade Óssea , Porosidade
9.
J Control Release ; 362: 489-501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673308

RESUMO

Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.

10.
Funct Integr Genomics ; 12(2): 357-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22351243

RESUMO

Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.


Assuntos
Hibernação/genética , Ílio/anatomia & histologia , Ílio/fisiologia , Regulação para Cima , Ursidae/fisiologia , Animais , Apoptose/genética , Vias Biossintéticas/genética , Reabsorção Óssea/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes , Ílio/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Osteogênese/genética , Ursidae/genética , Ursidae/metabolismo
11.
Acta Biomater ; 145: 77-87, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460910

RESUMO

Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20-90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. STATEMENT OF SIGNIFICANCE: Postmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.


Assuntos
Caderinas , Hidrogéis , Osteoporose Pós-Menopausa , Osteoporose , Animais , Caderinas/metabolismo , Feminino , Humanos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Osteoporose/terapia , Osteoporose Pós-Menopausa/complicações , Ovariectomia/efeitos adversos , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Secretoma/efeitos dos fármacos , Secretoma/metabolismo , Inibidor Tecidual de Metaloproteinase-1
12.
J Exp Biol ; 214(Pt 8): 1240-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21430199

RESUMO

Lack of activity causes bone loss In most animals. Hibernating bears have physiological processes to prevent cortical and trabecular bone loss associated with reduced physical activity, but different mechanisms of torpor among hibernating species may lead to differences in skeletal responses to hibernation. There are conflicting reports regarding whether small mammals experience bone loss during hibernation. To investigate this phenomenon, we measured cortical and trabecular bone properties in physically active and hibernating juvenile and adult 13-lined ground squirrels (Ictidomys tridecemlineatus, previous genus name Spermophilus). Cortical bone geometry, strength and mineral content were similar in hibernating compared with active squirrels, suggesting that hibernation did not cause macrostructural cortical bone loss. Osteocyte lacunar size increased (linear regression, P=0.001) over the course of hibernation in juvenile squirrels, which may indicate an osteocytic role in mineral homeostasis during hibernation. Osteocyte lacunar density and porosity were greater (+44 and +59%, respectively; P<0.0001) in hibernating compared with active squirrels, which may reflect a decrease in osteoblastic activity (per cell) during hibernation. Trabecular bone volume fraction in the proximal tibia was decreased (-20%; P=0.028) in hibernating compared with physically active adult squirrels, but was not different between hibernating and active juvenile squirrels. Taken together, these data suggest that 13-lined ground squirrels may be unable to prevent microstructural losses of cortical and trabecular bone during hibernation, but importantly may possess a biological mechanism to preserve cortical bone macrostructure and strength during hibernation, thus preventing an increased risk of bone fracture during remobilization in the spring.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/patologia , Hibernação/fisiologia , Sciuridae/anatomia & histologia , Sciuridae/fisiologia , Animais , Densidade Óssea , Osso e Ossos/química , Osso e Ossos/fisiologia , Feminino , Estações do Ano , Estresse Mecânico
13.
J Mech Behav Biomed Mater ; 114: 104224, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296863

RESUMO

Bighorn sheep rams participate in high impact head-butting without overt signs of brain injury, thus providing a naturally occurring animal model for studying brain injury mitigation. Previously published finite element modeling showed that both the horn and bone materials play important roles in reducing brain cavity accelerations during ramming. However, in that study the elastic modulus of bone was assumed to be similar to that of human bone since the modulus of ram bone was unknown. Therefore, the goal of this study was to quantify the mechanical properties, mineral content, porosity, and microstructural organization of horncore cortical bone from juvenile and adult rams. Mineral content and elastic modulus increased with horn size, and porosity decreased. However, modulus of toughness did not change with horn size. This latter finding raises the possibility that the horncore cortical bone has not adapted exceptional toughness despite an extreme loading environment and may function primarily as an interface material between the horn and the porous bone within the horncore. Thus, geometric properties of the horn and horncore, including the porous bone architecture, may be more important for energy absorption during ramming than the horncore cortical bone. Results from this study can be used to improve accuracy of finite element models of bighorn sheep ramming to investigate these possibilities moving forward.


Assuntos
Cornos , Carneiro da Montanha , Animais , Módulo de Elasticidade , Masculino , Porosidade , Ovinos , Crânio
14.
J Mech Behav Biomed Mater ; 119: 104518, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882409

RESUMO

Nature provides many biological materials and structures with exceptional energy absorption capabilities. Few, relatively simple molecular building blocks (e.g., calcium carbonate), which have unremarkable intrinsic mechanical properties individually, are used to produce biopolymer-bioceramic composites with unique hierarchical architectures, thus producing biomaterial-architectures with extraordinary mechanical properties. Several biomaterials have inspired the design and manufacture of novel material architectures to address various engineering problems requiring high energy absorption capabilities. For example, the microarchitecture of seashell nacre has inspired multi-material 3D printed architectures that outperform the energy absorption capabilities of monolithic materials. Using the hierarchical architectural features of biological materials, iterative design approaches using simulation and experimentation are advancing the field of bioinspired material design. However, bioinspired architectures are still challenging to manufacture because of the size scale and architectural hierarchical complexity. Notwithstanding, additive manufacturing technologies are advancing rapidly, continually providing researchers improved abilities to fabricate sophisticated bioinspired, hierarchical designs using multiple materials. This review describes the use of additive manufacturing for producing innovative synthetic materials specifically for energy absorption applications inspired by nacre, conch shell, shrimp shell, horns, hooves, and beetle wings. Potential applications include athletic prosthetics, protective head gear, and automobile crush zones.


Assuntos
Materiais Biomiméticos , Nácar , Animais , Materiais Biocompatíveis , Carbonato de Cálcio , Fenômenos Físicos
15.
Bone ; 145: 115845, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450432

RESUMO

Disuse osteoporosis results from physical inactivity. Reduced mechanical loading of bone stimulates bone resorption leading to bone loss, decreased mechanical properties, and increased fracture risk. Compensatory mechanisms evolved in hibernators to preserve skeletal muscle and bone during the prolonged physical inactivity that occurs during annual hibernation. This paper reports the preservation of bone properties in an exceptionally old black bear that was physically inactive for about 6 months annually for 31 years. The biological mechanisms that preserve bone during prolonged disuse during hibernation are also reviewed.


Assuntos
Hibernação , Osteoporose , Ursidae , Animais , Densidade Óssea , Osso e Ossos , Osteoporose/prevenção & controle
16.
Tissue Eng Part A ; 27(3-4): 246-255, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615861

RESUMO

Characterizing the release profile for materials-directed local delivery of bioactive molecules and its effect on bone regeneration is an important step to improve our understanding of, and ability to optimize, the bone healing response. This study examined the local delivery of parathyroid hormone (PTH) using a thiol-ene hydrogel embedded in a porous poly(propylene fumarate) (PPF) scaffold for bone regeneration applications. The aim of this study was to characterize the degradation-controlled in vitro release kinetics of PTH from the thiol-ene hydrogels, in vivo hydrogel degradation in a subcutaneous implant model, and bone healing in a rat critical size bone defect. Tethering PTH to the hydrogel matrix eliminated the early timepoint burst release that was observed in previous in vitro work where PTH was free to diffuse out of the matrix. Only 8% of the tethered PTH was released from the hydrogel during the first 2 weeks, but by day 21, 80% of the PTH was released, and complete release was achieved by day 28. In vivo implantation revealed that complete degradation of the hydrogel alone occurred by day 21; however, when incorporated in a three-dimensional printed osteoconductive PPF scaffold, the hydrogel persisted for >56 days. Treatment of bone defects with the composite thiol-ene hydrogel-PPF scaffold, delivering either 3 or 10 µg of tethered PTH 1-84, was found to increase bridging of critical size bone defects, whereas treatment with 30 µg of tethered PTH resulted in less bone ingrowth into the defect area. Continued development of this biomaterial delivery system for PTH could lead to improved therapies for treatment of nonunion fractures and critical size bone defects.


Assuntos
Regeneração Óssea , Hormônio Paratireóideo , Animais , Materiais Biocompatíveis , Hidrogéis , Cinética , Hormônio Paratireóideo/farmacologia , Ratos
17.
Sci Rep ; 11(1): 8281, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859306

RESUMO

Physical inactivity leads to losses of bone mass and strength in most mammalian species. In contrast, hibernating bears show no bone loss over the prolonged periods (4-6 months) of immobility during winter, which suggests that they have adaptive mechanisms to preserve bone mass. To identify transcriptional changes that underlie molecular mechanisms preventing disuse osteoporosis, we conducted a large-scale gene expression screening in the trabecular bone and bone marrow, comparing hibernating and summer active bears through sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated down-regulation of genes involved in bone resorption, osteoclast differentiation and signaling, and apoptosis during hibernation. These findings are consistent with previous histological findings and likely contribute to the preservation of bone during the immobility of hibernation. In contrast, no significant enrichment indicating directional changes in gene expression was detected in the gene sets of bone formation and osteoblast signaling in hibernating bears. Additionally, we revealed significant and coordinated transcriptional induction of gene sets involved in aerobic energy production including fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial metabolism. Mitochondrial oxidation was likely up-regulated by transcriptionally induced AMPK/PGC1α pathway, an upstream stimulator of mitochondrial function.


Assuntos
Densidade Óssea/genética , Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Hibernação/fisiologia , Osteogênese/genética , Transcrição Gênica/genética , Ursidae/genética , Ursidae/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Osteoclastos/fisiologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/genética
18.
J Biomech Eng ; 132(4): 041005, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20387968

RESUMO

Successful bone tissue engineering requires the understanding of cellular activity in three-dimensional (3D) architectures and how it compares to two-dimensional (2D) architecture. We developed a perfusion culture system that utilizes fluid flow to mechanically load a cell-seeded 3D scaffold. This study compared the gene expression of osteoblastic cells in 2D and 3D cultures, and the effects of mechanical loading on gene expression in 2D and 3D cultures. MC3T3-E1 osteoblastlike cells were seeded onto 2D glass slides and 3D calcium phosphate scaffolds and cultured statically or mechanically loaded with fluid flow. Gene expression of OPN and FGF-2 was upregulated at 24 h and 48 h in 3D compared with 2D static cultures, while collagen 1 gene expression was downregulated. In addition, while flow increased OPN in 2D culture at 48 h, it decreased both OPN and FGF-2 in 3D culture. In conclusion, gene expression is different between 2D and 3D osteoblast cultures under static conditions. Additionally, osteoblasts respond to shear stress differently in 2D and 3D cultures. Our results highlight the importance of 3D mechanotransduction studies for bone tissue engineering applications.


Assuntos
Regulação da Expressão Gênica/fisiologia , Mecanotransdução Celular/fisiologia , Osteoblastos/fisiologia , Proteoma/metabolismo , Engenharia Tecidual/métodos , Células 3T3 , Animais , Camundongos , Estimulação Física/métodos , Estresse Mecânico
19.
PLoS One ; 15(8): e0237042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813735

RESUMO

The largest dinosaurs were enormous animals whose body mass placed massive gravitational loads on their skeleton. Previous studies investigated dinosaurian bone strength and biomechanics, but the relationships between dinosaurian trabecular bone architecture and mechanical behavior has not been studied. In this study, trabecular bone samples from the distal femur and proximal tibia of dinosaurs ranging in body mass from 23-8,000 kg were investigated. The trabecular architecture was quantified from micro-computed tomography scans and allometric scaling relationships were used to determine how the trabecular bone architectural indices changed with body mass. Trabecular bone mechanical behavior was investigated by finite element modeling. It was found that dinosaurian trabecular bone volume fraction is positively correlated with body mass similar to what is observed for extant mammalian species, while trabecular spacing, number, and connectivity density in dinosaurs is negatively correlated with body mass, exhibiting opposite behavior from extant mammals. Furthermore, it was found that trabecular bone apparent modulus is positively correlated with body mass in dinosaurian species, while no correlation was observed for mammalian species. Additionally, trabecular bone tensile and compressive principal strains were not correlated with body mass in mammalian or dinosaurian species. Trabecular bone apparent modulus was positively correlated with trabecular spacing in mammals and positively correlated with connectivity density in dinosaurs, but these differential architectural effects on trabecular bone apparent modulus limit average trabecular bone tissue strains to below 3,000 microstrain for estimated high levels of physiological loading in both mammals and dinosaurs.


Assuntos
Osso Esponjoso/anatomia & histologia , Osso Esponjoso/fisiologia , Dinossauros/anatomia & histologia , Animais , Anisotropia , Fenômenos Biomecânicos , Densidade Óssea/fisiologia , Osso e Ossos/anatomia & histologia , Força Compressiva/fisiologia , Simulação por Computador , Fêmur/anatomia & histologia , Análise de Elementos Finitos , Fósseis , Processamento de Imagem Assistida por Computador/métodos , Mamíferos/anatomia & histologia , Estresse Mecânico , Tíbia/anatomia & histologia , Microtomografia por Raio-X/métodos
20.
J Orthop Res ; 38(3): 536-544, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709588

RESUMO

Neither allograft nor commercially available bone graft substitutes provide the same quality of bone healing as autograft. Incorporation of bioactive molecules like parathyroid hormone (PTH) within bone graft substitute materials may provide similar, if not better treatment options to grafting. The goal of this work was to develop a biomaterial system for the local delivery of PTH to large bone defects for promoting bone regeneration. PTH was loaded in a thiol-ene hydrogel at several concentrations and polymerized in and around an osteoconductive poly(propylene fumarate) (PPF) scaffold. PTH was shown to be bioactive when released from the hydrogel for up to 21 days. Eighty percent of the PTH was released by day 3 with the remaining 20% released by day 14. Bone healing was quantified in rat critical size femoral defects that were treated with hydrogel/PPF and 0, 1, 3, 10, or 30 µg of PTH. Although complete osseous healing was not observed in all samples in any one treatment group, all samples in the 10 µg PTH group were bridged fully by bone or a combination of bone and cartilage containing hypertrophic chondrocytes and endochondral ossification. Outcome measures indicated improved defect bridging by a combination of bony and cartilaginous tissue in the 10 µg treatment group compared with empty bone defects and defects treated with only hydrogel/PPF (i.e., without PTH). Given the tailorability of the hydrogel, future studies will investigate the effects of prolonged gradual PTH release on bone healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:536-544, 2020.


Assuntos
Doenças Ósseas/terapia , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Hormônio Paratireóideo/administração & dosagem , Compostos de Sulfidrila/química , Animais , Materiais Biocompatíveis , Substitutos Ósseos , Osso e Ossos/efeitos dos fármacos , Condrócitos/citologia , Fêmur/cirurgia , Fumaratos/química , Cinética , Masculino , Osteogênese/efeitos dos fármacos , Polipropilenos/química , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Ursidae , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA