Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015852

RESUMO

This article reported a compact ultra-thin tightly arranged 4 × 4 multiple-input multiple-output (MIMO) antenna pair (AP) functioning in the fifth-generation (5G) n78 band (3.4-3.6 GHz) for the ultra-thin 5G mobile handset. Two APs were printed on the center of two sideboards. A T-shaped open-ended slot was utilized in the grounding plane to improve the port impedance matching and attenuate the reciprocal magnetic coupling. A minimized total volume of 145 × 75 × 5 mm3 was obtained, and the area of each radiating unit was only 8.5 × 4.2 mm2 (0.1λ0 × 0.05λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). By placing two radiating elements in an exceeding closed (1 mm or 0.01167λ0) distance, the designed AP precisely resonated at 3.5 GHz, and an acceptable measured isolation performance superior to 17 dB was attained. A prototype of this presented APs system was printed and tested, and remarkable consistency was observed between the simulated and measured curves. Numerous indicators were computed to assess its MIMO performance, such as Envelope Correlation Efficiency (ECC), Diversity Gain (DG), Total Active Reflection Coefficient (TARC), and Multiplexing Efficiency (ME).

2.
Micromachines (Basel) ; 13(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36014189

RESUMO

An ultrathin dual-band eight-element multiple input-multiple output (MIMO) antenna operating in fifth-generation (5G) 3.4-3.6 GHz and 4.8-5 GHz frequency bands for future ultrathin smartphones is proposed in this paper. The size of a single antenna unit is 9 × 4.2 mm2 (0.105 λ × 0.05 λ, λ equals the free-space wavelength of 3.5 GHz). Eight antenna units are structured symmetrically along with two sideboards. Two decoupling branches (DB1 and DB2) are employed to weaken the mutual coupling between Ant. 1 and Ant. 2 and between Ant. 2 and Ant. 3, respectively. The measured -10 dB impedance bands are 3.38-3.82 GHz and 4.75-5.13 GHz, which can entirely contain the desired bands. Measured isolation larger than 14.5 dB and 15 dB is obtained in the first and second resonant modes, respectively. Remarkable consistency between the simulated and measured results can be achieved. Several indicators, such as the envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and multiplexing efficiency (ME), have been presented to assess the MIMO performance of the designed antenna.

3.
Micromachines (Basel) ; 12(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926118

RESUMO

This paper presents a dual-band four-element multiple-input-multiple-output (MIMO) array for the fifth generation (5G) mobile communication. The proposed antenna is composed of an open-loop ring resonator feeding element and a T-shaped radiating element. The utilization of the open-loop ring resonator not only reduces the size of the antenna element, but also provides positive cross-coupling. The dimension of a single antenna element is 14.9 mm × 7 mm (0.27λ × 0.13λ, where λ is the wavelength of 5.5 GHz). The MIMO antenna exhibits a dual-band feature from 3.3 to 3.84 GHz and 4.61 to 5.91 GHz, which can cover 5G New Radio N78 (3.3-3.8 GHz), 5G China Band N79 (4.8-5 GHz), and IEEE 802.11 ac (5.15-5.35 GHz, 5.725-5.85 GHz). The measured total efficiency and isolation are better than 70% and 15 dB, respectively. The calculated envelope correlation coefficient (ECC) is less than 0.02. The measured results are in good agreement with the simulated results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA