Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 158(4): 943-959, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813270

RESUMO

Signaling pathways mediated by corticotropin-releasing factor and its receptor 1 (CRF1) play a central role in stress responses. Dysfunction of the CRF system has been associated with neuropsychiatric disorders. However, dynamic changes in the CRF system during brain development and aging are not well investigated. In this study, we characterized CRF1, CRF, and corticotropin-releasing factor binding protein (CRFBP) expression in different brain regions in both male and female C57BL/6J mice from 1 to 18 months of age under basal conditions as well as after an acute 2-hr-restraint stress. We found that CRF and CRF1 levels tended to increase in the hippocampus and hypothalamus, and to decrease in the prefrontal cortex with aging, especially at 18 months of age, whereas CRFBP expression followed an opposite direction in these brain areas. We also observed area-specific sex differences in the expression of these three proteins. For example, CRF expression was lower in females than in males in all the brain regions examined except the prefrontal cortex. After acute stress, CRF and CRF1 were up-regulated at 1, 6, and 12 months of age, and down-regulated at 18 months of age. Females showed more robust changes compared to males of the same age. CRFBP expression either decreased or remained unchanged in most of the brain areas following acute stress. Our findings suggest that brain CRF1, CRF, and CRFBP expression changes dynamically across the lifespan and under stress condition in a sex- and regional-specific manner. Sex differences in the CRF system in response to stress may contribute to the etiology of stress-related neuropsychiatric disorders.


Assuntos
Química Encefálica/genética , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Hormônio Liberador da Corticotropina/biossíntese , Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Restrição Física , Caracteres Sexuais , Estresse Psicológico/psicologia
2.
J Neuroinflammation ; 18(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407625

RESUMO

BACKGROUND: The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS: In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS: Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION: These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.


Assuntos
Envelhecimento/metabolismo , Precursor de Proteína beta-Amiloide , Locus Cerúleo/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Norepinefrina/metabolismo , Presenilina-1 , Envelhecimento/genética , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Locus Cerúleo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Norepinefrina/genética , Presenilina-1/genética , Medula Espinal/metabolismo , Medula Espinal/patologia
3.
Mol Cell ; 46(4): 484-94, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22542455

RESUMO

The NAD-dependent histone deacetylase Sirt1 antagonizes p53 transcriptional activity to regulate cell-cycle progression and apoptosis. We have identified a ubiquitin-specific peptidase, USP22, one of the 11 death-from-cancer signature genes that are critical in controlling cell growth and death, as a positive regulator of Sirt1. USP22 interacts with and stabilizes Sirt1 by removing polyubiquitin chains conjugated onto Sirt1. The USP22-mediated stabilization of Sirt1 leads to decreasing levels of p53 acetylation and suppression of p53-mediated functions. In contrast, depletion of endogenous USP22 by RNA interference destabilizes Sirt1, inhibits Sirt1-mediated deacetylation of p53 and elevates p53-dependent apoptosis. Genetic deletion of the usp22 gene results in Sirt1 instability, elevated p53 transcriptional activity and early embryonic lethality in mice. Our study elucidates a molecular mechanism in suppression of cell apoptosis by stabilizing Sirt1 in response to DNA damage and reveals a critical physiological function of USP22 in mouse embryonic development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Endopeptidases/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Dano ao DNA , Desenvolvimento Embrionário/genética , Endopeptidases/deficiência , Endopeptidases/genética , Estabilidade Enzimática , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuína 1/genética , Ativação Transcricional , Proteases Específicas de Ubiquitina , Ubiquitinação
4.
J Neuroinflammation ; 16(1): 204, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694670

RESUMO

Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer's disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Dor Crônica/fisiopatologia , Doença de Alzheimer/complicações , Animais , Dor Crônica/etiologia , Humanos , Inflamação/fisiopatologia
5.
J Neurochem ; 146(6): 753-766, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953635

RESUMO

Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (Ih ) in the CA1 area increases with chronic mild stress. Reduction of Ih in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of Ih is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in Ih in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.


Assuntos
Adaptação Psicológica/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Comportamento Exploratório , Hipocampo/citologia , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Masculino , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Peroxinas/genética , Células Piramidais/metabolismo , Natação/psicologia
6.
J Immunol ; 195(8): 3685-93, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26378077

RESUMO

Alternative NF-κB signaling is crucial for B cell activation and Ig production, and it is mainly regulated by the inhibitor of κ B kinase (IKK) regulatory complex. Dysregulation of alternative NF-κB signaling in B cells could therefore lead to hyperactive B cells and Ig overproduction. In our previous, study we found that deleted in breast cancer 1 (DBC1) is a suppressor of the alternative NF-κB pathway to attenuate B cell activation. In this study, we report that loss of DBC1 results in spontaneous overproduction of Ig in mice after 10 mo of age. Using a double mutant genetic model, we confirm that DBC1 suppresses B cell activation through RelB inhibition. At the molecular level, we show that DBC1 interacts with alternative NF-κB members RelB and p52 through its leucine zipper domain. In addition, phosphorylation of DBC1 at its C terminus by IKKα facilitates its interaction with RelB and IKKα, indicating that DBC1-mediated suppression of alternative NF-κB is regulated by IKKα. Our results define the molecular mechanism of DBC1 inhibition of alternative NF-κB activation in suppressing B cell activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos B/imunologia , Quinase I-kappa B/imunologia , Ativação Linfocitária , Fator de Transcrição RelB/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/citologia , Células HEK293 , Humanos , Quinase I-kappa B/genética , Camundongos , Camundongos Knockout , Células NIH 3T3 , Fosforilação/genética , Fosforilação/imunologia , Fator de Transcrição RelB/genética
7.
Proc Natl Acad Sci U S A ; 111(40): 14524-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246588

RESUMO

Mutations in the gene encoding ubiquilin2 (UBQLN2) cause amyotrophic lateral sclerosis (ALS), frontotemporal type of dementia, or both. However, the molecular mechanisms are unknown. Here, we show that ALS/dementia-linked UBQLN2(P497H) transgenic mice develop neuronal pathology with ubiquilin2/ubiquitin/p62-positive inclusions in the brain, especially in the hippocampus, recapitulating several key pathological features of dementia observed in human patients with UBQLN2 mutations. A major feature of the ubiquilin2-related pathology in these mice, and reminiscent of human disease, is a dendritic spinopathy with protein aggregation in the dendritic spines and an associated decrease in dendritic spine density and synaptic dysfunction. Finally, we show that the protein inclusions in the dendritic spines are composed of several components of the proteasome machinery, including Ub(G76V)-GFP, a representative ubiquitinated protein substrate that is accumulated in the transgenic mice. Our data, therefore, directly link impaired protein degradation to inclusion formation that is associated with synaptic dysfunction and cognitive deficits. These data imply a convergent molecular pathway involving synaptic protein recycling that may also be involved in other neurodegenerative disorders, with implications for development of widely applicable rational therapeutics.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Demência/genética , Mutação , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Demência/metabolismo , Demência/fisiopatologia , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Atividade Motora/genética , Atividade Motora/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Ubiquitinas/metabolismo
8.
J Immunol ; 193(11): 5515-24, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25362179

RESUMO

CD40 and BAFFR signaling play important roles in B cell proliferation and Ig production. In this study, we found that B cells from mice with deletion of Dbc1 gene (Dbc1(-/-)) show elevated proliferation, and IgG1 and IgA production upon in vitro CD40 and BAFF, but not BCR and LPS stimulation, indicating that DBC1 inhibits CD40/BAFF-mediated B cell activation in a cell-intrinsic manner. Microarray analysis and chromatin immunoprecipitation experiments reveal that DBC1 inhibits B cell function by selectively suppressing the transcriptional activity of alternative NF-κB members RelB and p52 upon CD40 stimulation. As a result, when immunized with nitrophenylated-keyhole limpet hemocyanin, Dbc1(-/-) mice produce significantly increased levels of germinal center B cells, plasma cells, and Ag-specific Ig. Finally, loss of DBC1 in mice leads to higher susceptibility to experimental autoimmune myasthenia gravis. Our study identifies DBC1 as a novel regulator of B cell activation by suppressing the alternative NF-κB pathway.


Assuntos
Linfócitos B/imunologia , Miastenia Gravis Autoimune Experimental/imunologia , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasmócitos/imunologia , Animais , Formação de Anticorpos/genética , Fator Ativador de Células B/metabolismo , Antígenos CD40/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Células HEK293 , Humanos , Tolerância Imunológica , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Análise em Microsséries , Miastenia Gravis Autoimune Experimental/genética , NF-kappa B/genética , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Ativação Transcricional/genética
9.
Brain Res ; 1837: 148951, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642789

RESUMO

Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.


Assuntos
Envelhecimento , Doença de Alzheimer , Hipocampo , Histona Desacetilases , Camundongos Transgênicos , Sinapses , Animais , Envelhecimento/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Sinapses/metabolismo , Masculino , Memória Espacial/fisiologia , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Memória/fisiologia , Presenilina-1/genética
10.
Discov Ment Health ; 4(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175420

RESUMO

Depression is a common and devastating neuropsychiatric symptom in the elderly and in patients with dementia. In particular, nearly 80% of patients with Alzheimer's Disease dementia experience depression during disease development and progression. However, it is unknown whether the depression in patients with dementia shares the same molecular mechanisms as depression presenting as primary psychiatric disease or occurs and persists through alternative mechanisms. In this review, we discuss how the clinical presentation and treatment differ between depression in dementia and as a primary psychiatric disease, with a focus on major depressive disorder. Then, we hypothesize several molecular mechanisms that may be unique to depression in dementia such as neuropathological changes, inflammation, and vascular events. Finally, we discuss existing issues and future directions for investigation and treatment of depression in dementia.

11.
Transl Psychiatry ; 14(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575567

RESUMO

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our cohort: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissues. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly associated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high-impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.


Assuntos
Doença de Alzheimer , Apatia , Transtornos Psicóticos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Sintomas Comportamentais
12.
Behav Brain Res ; 447: 114420, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028517

RESUMO

BACKGROUND: Antipsychotic drugs prescribed to elderly patients with neuropsychiatric disorders often experience severe extrapyramidal side effects. Previous studies from our group suggest that changes in histone modifications during aging increase the risk for antipsychotic drug side effects, because co-administration of antipsychotics with class 1 histone deacetylase (HDAC) inhibitors could mitigate the severity of motor side effects in aged mice. However, which HDAC subtype contributes to the age-related sensitivity to antipsychotic drug side effects is unknown. METHODS: In this study, we overexpressed histone deacetylase type 1(HDAC1) in the striatum of 3-month-old mice and knocked down HDAC 1 in the striatum of 21-month-old mice by microinjection of AAV9-HDAC1-GFP or AAV9-CRISPR/Cas9-HDAC1-GFP vectors. Four weeks after the viral-vector delivery, the typical antipsychotic drug haloperidol was administered daily for 14 days, followed by motor function assessments through the open field, rotarod, and catalepsy behavioral tests. RESULTS: Young mice with overexpressed HDAC1 showed increased cataleptic behavior induced by haloperidol administration, which is associated with the increased HDAC1 level in the striatum. In contrast, aged mice with HDAC1 knocked down rescued locomotor activity, motor coordination, and decreased cataleptic behavior induced by haloperidol administration, which is associated with decreased HDAC1 level in the striatum. CONCLUSIONS: Our results suggest that HDAC1 is a critical regulator in haloperidol-induced severe motor side effects in aged mice. Repression of HDAC1 expression in the striatum of aged mice could mitigate typical antipsychotic drug-induced motor side effects.


Assuntos
Antipsicóticos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Haloperidol , Histona Desacetilase 1 , Animais , Camundongos , Antipsicóticos/efeitos adversos , Haloperidol/efeitos adversos , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia
13.
Res Sq ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711772

RESUMO

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our sample: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissue. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly correlated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.

14.
Psychopharmacology (Berl) ; 240(12): 2641-2655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700086

RESUMO

RATIONALE: Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE: In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aß levels and plaque deposition in APP/PS1 mice. METHODS: We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS: In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION: Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Humanos , Animais , Lactente , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/uso terapêutico , Doença de Alzheimer/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Transtornos da Memória/complicações , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética
15.
Neurobiol Aging ; 126: 113-122, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989547

RESUMO

Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aß42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aß42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.


Assuntos
Doença de Alzheimer , Apatia , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Estudos Transversais , Camundongos Transgênicos , Modelos Animais de Doenças
16.
World J Microbiol Biotechnol ; 28(5): 2237-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22806047

RESUMO

To evaluate the genetic diversity of Pleurotus citrinopileatus Singer cultivars in China, 20 P. citrinopileatus strains were analyzed using morphological traits, inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) molecular markers. Eleven ISSR primers amplified a total of 116 DNA fragments of which 96 (82.91%) were polymorphic, whereas 8 SRAP primer pairs amplified 69 fragments of which 65 (93.47%) were polymorphic. Phylogenetic trees constructed on the basis of ISSR, SRAP, and combined ISSR/SRAP analyses using the Unweighted Pair-group Method with Arithmetic Averages method distributed the 20 strains into three or six major groups. The grouping exhibited great similarity and was generally consistent with their morphological characters and antagonism test, which indicated a high level of genetic diversity among P. citrinopileatus Singer and relationship between each other. Based on the genetic analysis, the primary mini-core strains were constructed with progressive sampling method of the smallest genetic distance. The mini-core germplasm collection included 4 strains (strain 2, 5, 7 and 11). Our findings will provide a scientific fundament for facilitating parent selection for broadening genetic base, accelerating the genetic breeding, identification of cultivated strains and the development of bioactive products from this commercially important medicinal mushroom.


Assuntos
Variação Genética , Tipagem Molecular , Técnicas de Tipagem Micológica , Pleurotus/genética , China , Análise por Conglomerados , Primers do DNA/genética , DNA Fúngico/genética , Genótipo , Filogenia , Reação em Cadeia da Polimerase
17.
Curr Res Neurobiol ; 3: 100025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518344

RESUMO

Conflicting evidence suggest that perturbations of GABAergic neurotransmission play crucial roles in disrupting cortical neuronal network oscillations, memory, and cognitive deficits in Alzheimer's disease (AD). However, the role and impact of sex differences on GABAergic transmission in AD are not well understood. Using an APP knock-in mouse model of AD, APPNLGF mice, we studied the effects of acute diazepam administration on memory and anxiety-like behavior to unveil sex-dependent dysregulation of GABAergic neurotransmission. We also examined sex differences in GABAA receptor subunit mRNA and protein expression and the role of epigenetic regulation in hippocampus of APPNLGF mice. We found that diazepam elicited dose-dependent suppression of locomotion in wildtype and APPNLGF mice. However, a low dose, which had no significant effect in both male and female wildtype as well as female APPNLGF mice, significantly suppressed locomotion in male APPNLGF mice. Furthermore, this low dose of diazepam was more efficacious at eliciting anxiolytic-like effects in male than female APPNLGF mice. The same low dose of diazepam disrupted recognition memory exclusively in male APPNLGF mice. Biochemical analyses revealed that hippocampal α1 and α5 GABAA receptor subunits mRNA and protein expression were significantly higher in male than female APPNLGF mice and were regulated by histone H3 tri-methylation (H3K4me3) but not histone H3 acetylation. The higher sensitivity of APPNLGF males to diazepam-induced behavioral effects may potentially be due to epigenetic-dependent upregulation of hippocampal α1 and α5 GABAA receptor subunits expression compared to female APPNLGF mice. These findings suggest that dysregulation of GABAergic neurotransmission plays a significant role in memory and affective behavior, particularly in male APPNLGF mice.

18.
Front Psychiatry ; 13: 1020831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684015

RESUMO

Antipsychotic drugs are still widely prescribed to control various severe neuropsychiatric symptoms in the elderly and dementia patients although they are off-label use in the United States. However, clinical practice shows greater side effects and lower efficacy of antipsychotics for this vulnerable population and the mechanisms surrounding this aged-related sensitivity are not well understood. Our previous studies have shown that aging-induced epigenetic alterations may be involved in the increasing severity of typical antipsychotic haloperidol induced side effects in aged mice. Still, it is unknown if similar epigenetic mechanisms extend to atypical antipsychotics, which are most often prescribed to dementia patients combined with severe neuropsychiatric symptoms. In this study, we report that atypical antipsychotic risperidone also causes increased motor side effect behaviors in aged mice and 5xFAD mice. Histone deacetylase (HDAC) inhibitor Valproic Acid and Entinostat can mitigate the risperidone induced motor side effects. We further showed besides D2R, reduced expression of 5-HT2A, one of the primary atypical antipsychotic targets in the striatum of aged mice that are also mitigated by HDAC inhibitors. Finally, we demonstrate that specific histone acetylation mark H3K27 is hypoacetylated at the 5htr2a and Drd2 promoters in aged mice and can be reversed with HDAC inhibitors. Our work here establishes evidence for a mechanism where aging reduces expression of 5-HT2A and D2R, the key atypical antipsychotic drug targets through epigenetic alteration. HDAC inhibitors can restore 5-HT2A and D2R expression in aged mice and decrease the motor side effects in aged and 5xFAD mice.

19.
J Neurol ; 269(6): 3147-3158, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34839456

RESUMO

BACKGROUND: The prevalence of dementia in China, particularly in rural areas, is consistently increasing; however, research on population-attributable fractions (PAFs) of risk factors for dementia is scarce. METHODS: We conducted a cross-sectional survey, namely, the China Multicentre Dementia Survey (CMDS) in selected rural and urban areas from 2018 to 2020. We performed face-to-face interviews and neuropsychological and clinical assessments to reach a consensus on dementia diagnosis. Prevalence and weighted PAFs of eight modifiable risk factors (six classical: less childhood education, hearing impairment, depression, physical inactivity, diabetes, and social isolation, and two novels: olfactory decline and being unmarried) for all-cause dementia were estimated. RESULTS: Overall, CMDS included 17,589 respondents aged ≥ 65 years, 55.6% of whom were rural residents. The age- and sex-adjusted prevalence for all-cause dementia was 9.11% (95% CI 8.96-9.26), 5.19% (5.07-5.31), and 11.98% (11.8-12.15) in the whole, urban, and rural areas of China, respectively. Further, the overall weighted PAFs of the eight potentially modifiable risk factors were 53.72% (95% CI 52.73-54.71), 50.64% (49.4-51.89), and 56.54% (55.62-57.46) in the whole, urban, and rural areas of China, respectively. The eight risk factors' prevalence differed between rural and urban areas. Lower childhood education (PAF: 13.92%) and physical inactivity (16.99%) were primary risk factors in rural and urban areas, respectively. CONCLUSIONS: The substantial urban-rural disparities in the prevalence of dementia and its risk factors exist, suggesting the requirement of resident-specific dementia-prevention strategies.


Assuntos
Demência , População Rural , Criança , China/epidemiologia , Estudos Transversais , Demência/epidemiologia , Humanos , Prevalência , Fatores de Risco , População Urbana
20.
Front Neurosci ; 15: 674745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690667

RESUMO

Background: Elderly patients treated with antipsychotic drugs often experience increased severity and frequency of side effects, yet the mechanisms are not well understood. Studies from our group indicate age-related histone modifications at drug targeted receptor gene promoters may contribute to the increased side effects, and histone deacetylase (HDAC) inhibitors entinostat (MS-275) and valproic acid (VPA) could reverse typical antipsychotic haloperidol (HAL) induced motor-side effects. However, whether such effects could be dose dependent and whether HDAC inhibitors could improve memory function in aged mice is unknown. Methods: We co-treated selective class 1 HDAC inhibitor tacedinaline (CI-994) at different doses (10, 20, and 30 mg/kg) with HAL (0.05 mg/kg) in young (3 months) and aged (21 months) mice for 14 consecutive days, then motor and memory behavioral tests were conducted, followed by biochemical measurements. Results: CI-994 at doses of 10 and 20 mg/kg could decrease HAL-induced cataleptic episodes but only 20 mg/kg was sufficient to improve motor coordination in aged mice. Additionally, CI-994 at 10 and 20 mg/kg mitigate HAL-induced memory impairment in aged mice. Biochemical analyses showed increased acetylation of histone marks H3K27ac and H3K18ac at the dopamine 2 receptor (D2R) gene (Drd2) promoter and increased expression of the Drd2 mRNA and D2R protein in the striatum of aged mice after administration of CI-994 at 20 mg/kg. Conclusions: Our results suggest CI-994 can reduce HAL-induced motor and memory side effects in aged mice. These effects may act through an increase of acetylation at the Drd2 promoter, thereby restoring D2R expression and improving antipsychotic drug action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA