Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 43(2): 196-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177502

RESUMO

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transcriptoma , Transporte de Íons/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Canal de Sódio Disparado por Voltagem NAV1.7/genética
2.
Nature ; 574(7780): 707-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31664194

RESUMO

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , RNA Nuclear Pequeno/genética , Adolescente , Adulto , Processamento Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Sítios de Splice de RNA , Splicing de RNA
3.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496540

RESUMO

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

4.
Sci Adv ; 9(13): eade5321, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989359

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain cancer. Despite multimodal treatment including surgery, radiotherapy, and chemotherapy, median patient survival has remained at ~15 months for decades. This situation demands an outside-the-box treatment approach. Using magnetic carbon nanotubes (mCNTs) and precision magnetic field control, we report a mechanical approach to treat chemoresistant GBM. We show that GBM cells internalize mCNTs, the mobilization of which by rotating magnetic field results in cell death. Spatiotemporally controlled mobilization of intratumorally delivered mCNTs suppresses GBM growth in vivo. Functionalization of mCNTs with anti-CD44 antibody, which recognizes GBM cell surface-enriched antigen CD44, increases mCNT recognition of cancer cells, prolongs mCNT enrichment within the tumor, and enhances therapeutic efficacy. Using mouse models of GBM with upfront or therapy-induced resistance to temozolomide, we show that mCNT treatment is effective in treating chemoresistant GBM. Together, we establish mCNT-based mechanical nanosurgery as a treatment option for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanotubos de Carbono , Camundongos , Animais , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Morte Celular , Linhagem Celular Tumoral
5.
Nat Cancer ; 4(10): 1418-1436, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697045

RESUMO

Glioblastoma (GBM) is an incurable brain cancer that lacks effective therapies. Here we show that EAG2 and Kvß2, which are predominantly expressed by GBM cells at the tumor-brain interface, physically interact to form a potassium channel complex due to a GBM-enriched Kvß2 isoform. In GBM cells, EAG2 localizes at neuron-contacting regions in a Kvß2-dependent manner. Genetic knockdown of the EAG2-Kvß2 complex decreases calcium transients of GBM cells, suppresses tumor growth and invasion and extends the survival of tumor-bearing mice. We engineered a designer peptide to disrupt EAG2-Kvß2 interaction, thereby mitigating tumor growth in patient-derived xenograft and syngeneic mouse models across GBM subtypes without overt toxicity. Neurons upregulate chemoresistant genes in GBM cells in an EAG2-Kvß2-dependent manner. The designer peptide targets neuron-associated GBM cells and possesses robust efficacy in treating temozolomide-resistant GBM. Our findings may lead to the next-generation therapeutic agent to benefit patients with GBM.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Canais de Potássio Éter-A-Go-Go/uso terapêutico , Modelos Animais de Doenças , Peptídeos/uso terapêutico , Neurônios/patologia
6.
Neuron ; 111(1): 30-48.e14, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36323321

RESUMO

Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of ß-catenin. Piezo2 knockout reverses WNT/ß-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.


Assuntos
Neoplasias Encefálicas , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Células Endoteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Canais Iônicos/metabolismo , Barreira Hematoencefálica/metabolismo
7.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097463

RESUMO

Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.


Assuntos
Canais de Cloreto/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Animais , Peso Corporal , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Canais de Cloreto/deficiência , Canais de Cloreto/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Camundongos , Mitose , Mutação/genética , Canais de Potássio Ativados por Sódio/metabolismo , Ligação Proteica , RNA/biossíntese , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Nat Commun ; 9(1): 2267, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891949

RESUMO

NMDA receptors (NMDARs) are crucial for excitatory synaptic transmission and synaptic plasticity. The number and subunit composition of synaptic NMDARs are tightly controlled by neuronal activity and sensory experience, but the molecular mechanism mediating NMDAR trafficking remains poorly understood. Here, we report that RIM1, with a well-established role in presynaptic vesicle release, also localizes postsynaptically in the mouse hippocampus. Postsynaptic RIM1 in hippocampal CA1 region is required for basal NMDAR-, but not AMPA receptor (AMPAR)-, mediated synaptic responses, and contributes to synaptic plasticity and hippocampus-dependent memory. Moreover, RIM1 levels in hippocampal neurons influence both the constitutive and regulated NMDAR trafficking, without affecting constitutive AMPAR trafficking. We further demonstrate that RIM1 binds to Rab11 via its N terminus, and knockdown of RIM1 impairs membrane insertion of Rab11-positive recycling endosomes containing NMDARs. Together, these results identify a RIM1-dependent mechanism critical for modulating synaptic function by facilitating membrane delivery of recycling NMDARs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal , Neurônios/metabolismo , Transporte Proteico , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Proteínas rab de Ligação ao GTP/metabolismo
9.
Neuron ; 100(4): 799-815.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30344046

RESUMO

Alteration of tissue mechanical properties is a physical hallmark of solid tumors including gliomas. How tumor cells sense and regulate tissue mechanics is largely unknown. Here, we show that mechanosensitive ion channel Piezo regulates mitosis and tissue stiffness of Drosophila gliomas, but not non-transformed brains. PIEZO1 is overexpressed in aggressive human gliomas and its expression inversely correlates with patient survival. Deleting PIEZO1 suppresses the growth of glioblastoma stem cells, inhibits tumor development, and prolongs mouse survival. Focal mechanical force activates prominent PIEZO1-dependent currents from glioma cell processes, but not soma. PIEZO1 localizes at focal adhesions to activate integrin-FAK signaling, regulate extracellular matrix, and reinforce tissue stiffening. In turn, a stiffer mechanical microenvironment elevates PIEZO1 expression to promote glioma aggression. Therefore, glioma cells are mechanosensory in a PIEZO1-dependent manner, and targeting PIEZO1 represents a strategy to break the reciprocal, disease-aggravating feedforward circuit between tumor cell mechanotransduction and the aberrant tissue mechanics. VIDEO ABSTRACT.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Adulto , Idoso , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Drosophila melanogaster , Feminino , Glioma/genética , Glioma/patologia , Humanos , Canais Iônicos/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA