RESUMO
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
RESUMO
Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approachâcentered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
RESUMO
Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.
RESUMO
Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.
RESUMO
BACKGROUND: Extensive research has been conducted on embryonic developmental disorders linked to Polycystic Ovary Syndrome (PCOS), a pathological condition that affects 5-10% of women and is characterized by irregularities in the menstrual cycle and infertility. By employing RNA sequencing (RNA-seq), we performed an in-depth investigation of PCOS-related changes in gene expression patterns at the mouse blastocyst stage. METHODS: The zygotes of female B6D2 mice were obtained and then differentiated into blastocysts in K + Simplex Optimised Medium (KSOM) cultures containing exo-NC (negative control for exosomes) or exo-LIPE-AS1 (a novel exosomal marker of PCOS). Subsequently, blastocysts were collected for RNA-seq. The bioinformatics was performed to analyze and compare the differences of gene expression profile between blastocysts of control and PCOS group. RESULTS: There were 1150 differentially expressed genes (DEGs) between the two groups of mouse blastocysts; 243 genes were upregulated and 907 downregulated in the blastocysts of the exo-LIPE-AS1 group compared to those of the exo-NC group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the genes involved in amino acid synthesis and glutathione metabolic pathways were down-regulated in exo-LIPE-AS1 group. CONCLUSION: This study has revealed that blastocyst developmental retardation may be associated with the downregulation of amino acid synthesis and glutathione metabolism, which may affect energy metabolism, biosynthesis, cellular osmotic pressure, antioxidant synthesis, ROS clearance or mitochondrial function, and ultimately cause blastocyst cell development abnormalities. Our research offers encouraging data on the mechanisms underlying aberrant embryonic development in patients with PCOS as well as potential treatment strategies.
Assuntos
Aminoácidos , Blastocisto , Desenvolvimento Embrionário , Glutationa , Síndrome do Ovário Policístico , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Feminino , Camundongos , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Glutationa/metabolismo , Aminoácidos/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Abdominal aortic aneurysm (AAA) is a degenerative disease that caused mortality in people aged >65. Senescence plays a critical role in AAA pathogenesis. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. Our Previous study found cyclic nucleotide phosphodiesterase 1C (PDE1C) exacerbate AAA through aggravate vascular smooth muscle cells (VSMCs) senescence by downregulating Sirtuin1 (SIRT1) expression and activity. Vinpocetine as a selective inhibitor of PDE1 and a clinical medication for cerebral vasodilation, it is unclear whether vinpocetine can rely on SIRT1 to alleviate AAA. This study showed that pre-treatment with vinpocetine remarkably prevented aneurysmal dilation and reduced aortic rupture in elastase-induced AAA mice. In addition, the elastin degradation, MMP (matrix metalloproteinase) activity, macrophage infiltration, ROS production, collagen fibers remodeling, and VSMCs senescence were decreased in AAA treated with vinpocetine. While these effects were unable to exert in VSMCs-specific SIRT1 knockout AAA mice. Accordingly, we revealed that vinpocetine suppressed migration, proliferation, and senescence in VSMCs. Moreover, vinpocetine reduced SIRT1 degradation by inhibiting lysosome-mediated autophagy. In conclusion, this study indicated that vinpocetine may be as a potential drug for therapy AAA through alleviate VSMCs senescence via the SIRT1-dependent pathway.
RESUMO
Background: The prevalence of abnormal physical development in preschool children is often linked to their dietary habits, necessitating a comprehensive investigation. Understanding the intricacies of these habits is crucial for formulating targeted interventions to enhance the overall health and well-being of this vulnerable population. Objective: This study aims to explore the dietary habits of preschool children in Shijiazhuang and evaluate their impact on abnormal physical development. The primary objective is to identify key dietary issues, particularly focusing on picky eating, and assess their association with undernutrition and obesity in this age group. Methods: Utilizing a stratified sampling approach, the study involves preschool children and their caregivers from various kindergartens in Shijiazhuang. On-site medical examinations are conducted to measure height and weight and calculate body mass index (BMI). Additionally, parents were surveyed to gather information on the general aspects and dietary habits of their children. Binary logistic regression analysis was employed to ascertain the correlation between picky eating and the risk of undernutrition and obesity. Results: The findings indicate that approximately 70% of preschool children maintain a normal BMI, while 16.67% experience undernutrition, and 13.33% face issues of being overweight or obese. Picky eating emerges as the predominant dietary habit issue, affecting 51.33% of the participants. Binary logistic regression analysis identifies picky eating as a significant risk factor for undernutrition and obesity among children. Conclusions: Picky eating stands out as the primary dietary habit concern for preschool children, concurrently posing a substantial risk for abnormal physical development. Urgent measures are warranted to rectify children's suboptimal dietary habits, elevate nutritional standards, and foster their overall health and development. These findings underscore the imperative need for interventions targeting dietary improvement in preschoolers, contributing to improving their well-being and long-term health outcomes.
RESUMO
OBJECTIVE: Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS: We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS: We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION: These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.
Assuntos
Exossomos , Líquido Folicular , Células da Granulosa , Oócitos , Síndrome do Ovário Policístico , RNA Longo não Codificante , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/metabolismo , Feminino , Líquido Folicular/metabolismo , RNA Longo não Codificante/genética , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Exossomos/genética , Exossomos/metabolismo , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Camundongos , Animais , Técnicas de Maturação in Vitro de Oócitos , Adulto , Esteroides/metabolismo , Oogênese/genética , Apoptose/genética , Proliferação de Células/genéticaRESUMO
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
RESUMO
Crystalline frameworks represent a cutting-edge frontier in material science, and recently, there has been a surge of interest in energetic crystalline frameworks. However, the well-established porosity often leads to diminished output energy, necessitating a novel approach for performance enhancement. Thiol-yne coupling, a versatile metal-free click reaction, has been underutilized in crystalline frameworks. As a proof of concept, we herein demonstrate the potential of this approach by introducing the energy-rich, size-matched, and reductive 1,2-dicarbadodecaborane-1-thiol (CB-SH) into an acetylene-functionalized framework, Zn(AIm)2, via thiol-yne click reaction. This innovative decoration strategy resulted in a remarkable 46.6 % increase in energy density, a six-fold reduction in ignition delay time (4â ms) with red fuming nitric acid as the oxidizer, and impressive enhancement of stability. Density functional theory calculations were employed to elucidate the mechanism by which CB-SH promotes hypergolic ignition. The thiol-yne click modification strategy presented here permits engineering of crystalline frameworks for the design of advanced energetic materials.
RESUMO
Precise control over the organic composition is crucial for tailoring the distinctive structures and properties of hybrid metal halides. However, this approach is seldom utilized to develop materials that exhibit stimuli-responsive circularly polarized luminescence (CPL). Herein, we present the synthesis and characterization of enantiomeric hybrid zinc bromides: biprotonated ((R/S)-C12H16N2)ZnBr4 ((R/S-LH2)ZnBr4) and monoprotonated ((R/S)-C12H15N2)2ZnBr4 ((R/S-LH1)2ZnBr4), derived from the chiral organic amine (R/S)-2,3,4,9-Tetrahydro-1H-carbazol-3-amine ((R/S)-C12H14N2). These compounds showcase luminescent properties; the zero-dimensional biprotonated form emits green light at 505â nm, while the monoprotonated form, with a pseudo-layered structure, displays red luminescence at 599 and 649â nm. Remarkably, the reversible local protonation-deprotonation behavior of the organic cations allows for exposure to polar solvents and heating to induce reversible structural and luminescent transformations between the two forms. Theoretical calculations reveal that the lower energy barrier associated with the deprotonation process within the pyrrole ring is responsible for the local protonation-deprotonation behavior observed. These enantiomorphic hybrid zinc bromides also exhibit switchable circular dichroism (CD) and CPL properties. Furthermore, their chloride counterparts were successfully obtained by adjusting the halogen ions. Importantly, the unique stimuli-responsive CPL characteristics position these hybrid zinc halides as promising candidates for applications in information storage, anti-counterfeiting, and information encryption.
RESUMO
Coinage metal (Au, Ag, Cu) cluster and polyoxometalate (POM) cluster represent two types of subnanometer "artificial atoms" with significant potential in catalysis, sensing, and nanomedicine. While composite clusters combining Ag/Cu clusters with POM have achieved considerable success, the assembly of gold clusters with POM is still lagging. Herein, we first designedly synthesized two cluster structural units: an Au3O cluster stabilized by diverse N-heterocyclic carbene (NHC) ligands and an amine-terminated POM linker. The subsequent reaction involved amine substitution in the POM linker for the central O atom in the Au3O cluster, resulting in the first ternary composite cluster-a POM cluster sandwiched by two Au clusters protected by NHCs. Single-crystal X-ray diffraction and other characteristic methods characterized their atomically precise structures. Furthermore, altering the NHC ligands decreased the number of gold atoms in the sandwich structures, accompanying the different protonated degrees of amine ligand in the terminal end of the POM linker. These composite clusters showed excellent performances in catalytic H2O2 conversion through the synergistic effect between gold clusters and POM clusters. This work opens a new avenue to functional composite metal clusters and would promote their enhanced catalysis applications through intercluster synergistic interactions within composite systems.
RESUMO
The specific states of aggregation of metal atoms in sub-nanometer-sized gold clusters are related to the different quantum confinement volumes of electrons, leading to novel optical and electronic properties. These volumes can be tuned by changing the relative positions of the gold atoms to generate isomers. Studying the isomeric gold core and the electron coupling between the basic units is fundamentally important for nanoelectronic devices and luminescence; however, appropriate cases are lacking. In this study, the structure of the first staggered di-superatomic Au25 -S was solved using single-crystal X-ray diffraction. The optical properties of Au25 -S were studied by comparing with eclipsed Au25 -E. From Au25 -E to Au25 -S, changes in the electronic structures occurred, resulting in significantly different optical absorptions originating from the coupling between the two Au13 modules. Au25 -S shows a longer electron decay lifetime of 307.7â ps before populating the lowest triplet emissive state, compared to 1.29â ps for Au25 -E. The experimental and theoretical results show that variations in the geometric isomerism lead to distinct photophysical processes owing to isomerism-dependent electronic coupling. This study offers new insights into the connection between the geometric isomerism of nanosized building blocks and the optical properties of their assemblies, opening new possibilities for constructing function-specific nanomaterials.
RESUMO
The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-Hâ â â N and N-Hâ â â N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.
RESUMO
Luminescent metal-organic cages are of great interest in contemporary research; however, their designed synthesis remains challenging. Here, we created metal-cluster-derived spacers, where emissive C3-symmetric Cu4 clusters have three arms modified by benzene alkynyl ligands, which are terminally functionalized by extensile -COOH and 15-crown-5-ether groups with directional coordination ability. Through vertex orientation, -COOH-functionalized cluster-based spacers coassembled with paddle-wheel Cu(I)xZn(II)2-x(COO)3 nodes in 3+3 mode, generating an emissive cubic cage, which subsequently gave another distorted cubic cage by synthetic modification on the nodes. Through face orientation, 15-crown-5-ether-containing cluster-based spacers capturing K+ ions in 3+2 mode produced an octahedral cage whose empty phase showed dual emission peaks, leading to diverse stimuli-responsive photoluminescence. This work provides new design and synthesis strategies for the integration of nodes and spacers based on metal clusters for cage materials as well as prototypes of luminescent metal-cluster cages for important sensing applications.
RESUMO
The manipulation of metal cluster enantiomers and their reconstruction remain challenging. Here, for the first time, we report an enantiomeric pair of hydride copper clusters [Cu18H(R/S-PEA)12](BF4)5 (R/S-Cu18H) made using designed chiral ligands. By manipulation of R/S-Cu18H with Ag+ ions, H- ions are released, leading to the reconstruction of 15 Cu atoms. Moreover, 4 Ag atoms replaced Cu atoms at the specific sites, resulting in the formation of homochiral [Cu15Ag4(R/S-PEA)12](BF4)5 (R/S-Cu15Ag4) with an isomorphic metal skeleton. This process was accompanied by a reduction reaction generating two free valence elections in the chiral alloying counterparts, which displayed orange emission. The solid-state R/S-Cu15Ag4 exhibited a photoluminescence quantum yield of 7.02% and excellent circularly polarized luminescence. The chiral transformations were resolved by single-crystal X-ray diffraction. The development of chiral copper hydride precursor-based metal clusters with chiroptical activities holds tremendous promise for advancing the field of optoelectronics and enabling new applications in lighting, displays, and beyond.
RESUMO
Circularly polarized luminescence (CPL) materials have attracted considerable attention for their promising applications in encryption, chiral sensing, and three-dimensional (3D) displays. However, the preparation of high-efficiency, pure blue CPL materials remains challenging. In this study, we reported an enantiomeric pair of triangle copper(I) clusters (R/S-Cu3) rigidified by employing chiral N-heterocyclic carbene (NHC) ligands with two pyridine-functionalized wingtips. These chiral clusters emitted pure blue phosphorescence that overlapped with that of the commercial blue phosphor having Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.14, 0.10), and the films exhibited an unprecedented photoluminescence quantum yield (PLQY) of â¼70.0%. Additionally, the solutions showed very bright circularly polarized phosphorescence (CPP) with a dissymmetry factor of ±2.1 × 10-3. The excellent solubility and photostability endowed these pure-blue-emitting chiral clusters with promising applications as pure blue CPP inks for 3D printing white objects, such as precise-atomic-enlarged models of metal clusters and a lovely white stereoscopic "rabbit". The intricate mechanism underlying blue phosphorescence in this small cluster and across various states is elucidated through a comprehensive approach that integrates thorough analysis of luminescence properties, controlled experiments, and theoretical calculations. For the first time, we propose that the dominant high-energy emission center is constituted by delocalized hybrid orbitals over multiple atomic centers, encompassing both the metal and the coordinated atoms. This challenges stereotypical assumptions that the cluster center solely supports low-energy emissions. This work expands the currently limited range of CPP functional materials and provides a new direction for CPP applications involving NHC-stabilized metal clusters.
RESUMO
Superstructures made from nanoscale clusters with new collective properties are promising in high-tech applications; however, chiral superstructures remain elusive, and the limited intercluster coupling effect at room temperature hampers the tailoring of collective properties. Here, we show that from chiral monomeric copper clusters to two enantiomeric pairs of supercrystals with distinct phases, the absorption band edge red-shifts by over 1.3 eV, with photoluminescence and circularly polarized phosphorescence from visible (572 nm) to near-infrared (NIR, 858 nm). These supercrystals with high NIR quantum yields of up to 45% at room temperature are prototyped for night-vision imaging. In response to solvent and temperature stimuli, chiral supercrystal-to-supercrystal transformations occurred, concomitant with high-contrast optical/chiroptical switching. In situ single-crystal X-ray diffraction (SCXRD), steady-state and time-resolved optical spectroscopy, and response experiments combined with theoretical calculations demonstrate that distance-sensitive intercluster orbital interactions contribute to the exceptional collective optical responses. Such chiral supercrystals built from subnanoscale metal clusters with novel collective chiroptical responses would be useful in the fields of information storage and NIR optical devices.
RESUMO
STUDY QUESTION: What are the differences in gene expression of cumulus cells (CCs) between young women with diminished ovarian reserve (DOR) and those of similar age with normal ovarian reserve (NOR)? SUMMARY ANSWER: Gene expression and metabolome profiling analysis demonstrate that the de novo serine synthesis pathway (SSP) is increased in the CCs of young women with DOR. WHAT IS KNOWN ALREADY: The incidence of DOR has risen, tending to present at younger ages. Its mechanisms and aetiologies are still poorly understood. Abnormal metabolism is present in luteinized CCs of patients with DOR. Previous studies have revealed that mitochondrial dysfunction and impaired oxidative phosphorylation in CCs are related to DOR in women of advanced age. The pathogenic mechanisms likely differ between young women with DOR and cases associated with advanced maternal age. Several studies have examined amino acid metabolism in the follicle, with a focus on embryo development, but less information is available about CCs. The physiological significance of de novo serine synthesis in follicles and oocytes remains largely unknown. STUDY DESIGN, SIZE, DURATION: CC samples were obtained from 107 young infertile women (age <38 years) undergoing ICSI, from July 2017 to June 2019, including 54 patients with DOR and 53 patients with NOR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte development data were analysed retrospectively. Comprehensive genome-wide transcriptomics of CCs was performed. Differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to categorize the functions of the DEGs and identify significantly enriched pathways. The transcript and protein levels of key enzymes involved in serine synthesis were verified in additional samples using quantitative real-time PCR (qRT-PCR) (n = 10) and capillary western blotting (n = 36). Targeted metabolomics of amino acids in CC extracts was performed by ultrahigh-performance liquid MS (UHPLC-MS/MS). MAIN RESULTS AND THE ROLE OF CHANCE: The number of oocytes (2.4 ± 2.2 versus 12.1 ± 5.3) and metaphase II oocytes (2.1 ± 2.0 versus 9.9 ± 4.9) retrieved was significantly decreased in the DOR versus the NOR group, respectively (P < 0.0001). The rates of fertilization (80.7% versus 78.8%), viable embryos (73.7% versus 72.5%), and high-quality embryos (42.8% versus 49.0%) did not differ between the DOR and NOR groups, respectively (P > 0.05). A total of 95 DEGs were found by transcriptome sequencing. GO and KEGG analyses demonstrated that the DEGs were linked to amino acid metabolism and suggested significantly higher activity of the de novo SSP in the CCs of young women with DOR. Further qRT-PCR and capillary western blotting revealed that key enzymes (PHGDH, PSAT1, PSPH, and SHMT2) involved in de novo serine synthesis were upregulated, and UHPLC-MS/MS analysis showed increases in serine and glycine (a downstream product of serine) levels in the CCs of young patients with DOR. Our data clearly demonstrate that the de novo SSP, which diverts 3-phosphoglycerate from glycolysis to serine synthesis, was upregulated in young DOR CCs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Regarding the reproductive capacity of young patients DOR, the pregnancy outcomes were not analysed. The sample size was limited, and only women undergoing ICSI were examined since this was a prerequisite for the acquisition of CCs, which may cause selection bias. The exact mechanisms by which the SSP in CCs regulates ovarian reserve still require further study. WIDER IMPLICATIONS OF THE FINDINGS: Our research presents new evidence that alterations of the SSP in CCs of young infertile women are associated with DOR. We believe this is a significant contribution to the field, which should be key for understanding the cause and mechanisms of ovarian hypofunction in young women. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Ministry of Science and Technology of China (2018YFC1005001) and National Natural Science Foundation of China (31601197). There were no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Feminina , Doenças Ovarianas , Reserva Ovariana , Gravidez , Humanos , Feminino , Infertilidade Feminina/metabolismo , Células do Cúmulo/metabolismo , Estudos Retrospectivos , Reserva Ovariana/fisiologia , Serina/metabolismo , Espectrometria de Massas em Tandem , Oócitos/metabolismo , Doenças Ovarianas/metabolismoRESUMO
Importance: Implantation failure remains a critical barrier to in vitro fertilization. Prednisone, as an immune-regulatory agent, is widely used to improve the probability of implantation and pregnancy, although the evidence for efficacy is inadequate. Objective: To determine the efficacy of 10 mg of prednisone compared with placebo on live birth among women with recurrent implantation failure. Design, Setting, and Participants: A double-blind, placebo-controlled, randomized clinical trial conducted at 8 fertility centers in China. Eligible women who had a history of 2 or more unsuccessful embryo transfer cycles, were younger than 38 years when oocytes were retrieved, and were planning to undergo frozen-thawed embryo transfer with the availability of good-quality embryos were enrolled from November 2018 to August 2020 (final follow-up August 2021). Interventions: Participants were randomized (1:1) to receive oral pills containing either 10 mg of prednisone (n = 357) or matching placebo (n = 358) once daily, from the day at which they started endometrial preparation for frozen-thawed embryo transfer through early pregnancy. Main Outcomes and Measures: The primary outcome was live birth, defined as the delivery of any number of neonates born at 28 or more weeks' gestation with signs of life. Results: Among 715 women randomized (mean age, 32 years), 714 (99.9%) had data available on live birth outcomes and were included in the primary analysis. Live birth occurred among 37.8% of women (135 of 357) in the prednisone group vs 38.8% of women (139 of 358) in the placebo group (absolute difference, -1.0% [95% CI, -8.1% to 6.1%]; relative ratio [RR], 0.97 [95% CI, 0.81 to 1.17]; P = .78). The rates of biochemical pregnancy loss were 17.3% in the prednisone group and 9.9% in the placebo group (absolute difference, 7.5% [95% CI, 0.6% to 14.3%]; RR, 1.75 [95% CI, 1.03 to 2.99]; P = .04). Of those in the prednisone group, preterm delivery occurred among 11.8% and of those in the placebo group, 5.5% of pregnancies (absolute difference, 6.3% [95% CI, 0.2% to 12.4%]; RR, 2.14 [95% CI, 1.00 to 4.58]; P = .04). There were no statistically significant between-group differences in the rates of biochemical pregnancy, clinical pregnancy, implantation, neonatal complications, congenital anomalies, other adverse events, or mean birthweights. Conclusions and Relevance: Among patients with recurrent implantation failure, treatment with prednisone did not improve live birth rate compared with placebo. Data suggested that the use of prednisone may increase the risk of preterm delivery and biochemical pregnancy loss. Our results challenge the value of prednisone use in clinical practice for the treatment of recurrent implantation failure. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1800018783.