Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(1): 907-916, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188591

RESUMO

An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play important roles in cervical cancer (CC) progression. However, the roles and underlying mechanisms of lncRNA opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) involved in the CC remain unclear. In the current study, we found that lncRNA OIP5-AS1 was upregulated in CC tissues and cell lines. High OIP5-AS1 expression was significantly correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and poor overall survival of patients with CC. Using in vitro function assays, we showed that OIP5-AS1 suppression significantly decreased the proliferation, colony formation, and invasion ability of CC cells. Moreover, we revealed that OIP5-AS1 could act as a competing endogenous RNA of miR-143-3p to regulate the ITGA6 expression. Rescue assays showed that miR-143-3p inhibitors or ITGA6 overexpression could reverse the inhibitory effects of OIP5-AS1 suppression on the proliferation and invasion in CC cells. In addition, OIP5-AS1 suppression reduced tumor growth in vivo. In conclusion, we demonstrated that OIP5-AS1 promoted proliferation and invasion of CC cells via increasing the ITGA6 expression by sponging miR-143-3p, which might be an effective therapeutic target for the treatment of patients with CC.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Integrina alfa6/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Animais , Feminino , Células HeLa , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Estadiamento de Neoplasias , Transfecção , Carga Tumoral/genética , Regulação para Cima/genética
2.
Biochem Biophys Res Commun ; 475(3): 245-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27216459

RESUMO

Distant metastasis and local recurrence are still the major causes for failure of treatment in patients with ovarian carcinoma (OC), making it urgent to further elicit the molecular mechanisms of OC metastasis. Sirtuin-3 (SIRT3), a member of the NAD(+)-dependent Class III histone deacetylases, may function as different role depending on the cell-type and tumor-type. However, the function and mechanism of SIRT3 has been not explored in OC metastasis. Here, we found that SIRT3 was significantly down-regulated in the metastatic tissues and highly metastatic cell line of ovarian cancer. In addition, knockdown of SIRT3 enhanced the migration and invasion in vitro and the liver metastasis in vivo of ovarian cancer cell. By contrast, ectopic overexpression of SIRT3 dramatically suppressed cancer cell metastatic capability. Mechanistically, SIRT3 inhibits epithelial-to-mesenchymal transition (EMT) by down-regulating Twist in ovarian cancer cells. Furthermore, an interaction between SIRT3 and Twist was detected. In conclusion, our results demonstrated that SIRT3 plays a crucial suppressive role in the metastasis of ovarian cancer by down-regulating Twist, and that this novel SIRT3/Twist axis may be valuable to develop new strategies for treating OC patients with metastasis.


Assuntos
Regulação para Baixo , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Sirtuína 3/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Nus , Invasividade Neoplásica/patologia , Proteínas Nucleares/genética , Ovário/metabolismo , Ovário/patologia , Proteína 1 Relacionada a Twist/genética
3.
Front Pharmacol ; 12: 783213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095494

RESUMO

Recent studies have confirmed the existence and key roles of microRNA (miRNAs) in cancer drug resistance, including cervical cancer (CC). The present study aims to establish a novel role for miR-92a-3p and its associated gene networks in cisplatin (DDP) resistance of CC. First, the disparities in miRNA expression between CC tissues and adjacent normal tissues were screened based on GSE19611 microarray data that retrieved from Gene Expression Omnibus (GEO), and we identified several miRs that were significantly downregulated or upregulated in CC tissues including miR-92a-3p. Moreover, miR-92a-3p was significantly up-regulated in DDP-resistant cells and was the most differently expressed miRNA. Functionally, knockdown of miR-92a-3p increased the sensitivity of DDP-resistant cells to DDP via inhibiting cell proliferation, migration and invasion, and promoting apoptosis. Conversely, overexpression of miR-92a-3p significantly induced DDP resistance in CC parental cells including HeLa and SiHa cells. Moreover, Krüppel-like factor 4 (KLF4) was identified as a direct target of miR-92a-3p, and an obvious inverse correlation was observed between the expression of miR-92a-3p and KLF4 in 40 pairs of cancer tissues. Furthermore, KLF4 knockdown reversed the promoting effect of miR-92a-3p inhibition on DDP sensitivity in DDP-resistant CC cells. Besides, high expression of miR-92a-3p was associated with DDP resistance, as well as a short overall survival in clinic. Taken together, these findings provide important evidence that miR-92a-3p targets KLF4 and is significant in DDP resistance in CC, indicating that miR-92a-3p may be an attractive target to increase DDP sensitivity in clinical CC treatment.

4.
Biomed Pharmacother ; 107: 712-720, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30138893

RESUMO

MicroRNAs have been demonstrated to play a crucial role in the development of ovarian cancer. Many studies prove that forms of miR-135a, including miR-135a-5p and miR-135a-3p, serve as tumour suppressors in multiple cancers. Nevertheless, the precise function of miR-135a-3p and the molecular mechanisms underlying the involvement of miR-135a-3p in ovarian carcinoma cell growth and metastasis remain largely unknown. Herein, we report that miR-135a-3p expression was significantly downregulated in ovarian carcinoma tissues compared with corresponding adjacent non-tumour tissues. Ectopic miR-135a-3p expression inhibited ovarian carcinoma cell proliferation, migration and invasion in vitro. Additionally, the overexpression of miR-135a-3p inhibited epithelial-mesenchymal transition (EMT) in ovarian cancer cells. A luciferase reporter assay confirmed that the C-C chemokine receptor type 2 (CCR2) gene was the target of miR-135a-3p. In addition, CCR2 depletion mimicked the inhibitory effects of miR-135a-3p on ovarian cancer cells in vitro. Rescue experiments using CCR2 overexpression further verified that CCR2 was a functional target of miR-135a-3p. Xenograft model assays demonstrated that miR-135a-3p functions as an anti-oncogene by targeting CCR2 in vivo. Taken together, these data prove that miR-135a-3p serves as a tumour suppressor gene in ovarian cancer by regulating CCR2.


Assuntos
Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Receptores CCR2/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Fenótipo , Receptores CCR2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA