Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Extremophiles ; 25(2): 143-158, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33616780

RESUMO

Biooxidation of gold-bearing refractory mineral ores such as arsenopyrite (FeAsS) in stirred tanks produces solutions containing highly toxic arsenic concentrations. In this study, ferrous iron and inorganic sulfur-oxidizing Acidithiobacillus strain IBUN Ppt12 most similar to Acidithiobacillus ferrianus and inorganic sulfur compound oxidizing Acidithiobacillus sp. IBUNS3 were grown in co-culture during biooxidation of refractory FeAsS. Total RNA was extracted and sequenced from the planktonic cells to reveal genes with different transcript counts involved in the response to FeAsS containing medium. The co-culture's response to arsenic release during biooxidation included the ars operon genes that were independently regulated according to the arsenopyrite concentration. Additionally, increased mRNA transcript counts were identified for transmembrane ion transport proteins, stress response mechanisms, accumulation of inorganic polyphosphates, urea catabolic processes, and tryptophan biosynthesis. Acidithiobacillus spp. RNA transcripts also included those encoding the Rus and PetI proteins involved in ferrous iron oxidation and gene clusters annotated as encoding inorganic sulfur compound metabolism enzymes. Finally, mRNA counts of genes related to DNA methylation, management of oxidative stress, chemotaxis, and motility during biooxidation were decreased compared to cells growing without mineral. The results provide insights into the adaptation of Acidithiobacillus spp. to growth during biooxidation of arsenic-bearing sulfides.


Assuntos
Acidithiobacillus , Acidithiobacillus/genética , Arsenicais , Compostos de Ferro , Minerais , Oxirredução , RNA , Sulfetos
2.
BMC Bioinformatics ; 21(1): 23, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964336

RESUMO

BACKGROUND: Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS: We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS: The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS: The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteômica , Algoritmos , Bactérias/genética , Teorema de Bayes , Biologia Computacional/métodos , Simulação por Computador , Transdução de Sinais , Biologia de Sistemas/métodos
3.
Microb Ecol ; 77(2): 288-303, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30019110

RESUMO

Two annual Baltic Sea phytoplankton blooms occur in spring and summer. The bloom intensity is determined by nutrient concentrations in the water, while the period depends on weather conditions. During the course of the bloom, dead cells sink to the sediment where their degradation consumes oxygen to create hypoxic zones (< 2 mg/L dissolved oxygen). These zones prevent the establishment of benthic communities and may result in fish mortality. The aim of the study was to determine how the spring and autumn sediment chemistry and microbial community composition changed due to degradation of diatom or cyanobacterial biomass, respectively. Results from incubation of sediment cores showed some typical anaerobic microbial processes after biomass addition such as a decrease in NO2- + NO3- in the sediment surface (0-1 cm) and iron in the underlying layer (1-2 cm). In addition, an increase in NO2- + NO3- was observed in the overlying benthic water in all amended and control incubations. The combination of NO2- + NO3- diffusion plus nitrification could not account for this increase. Based on 16S rRNA gene sequences, the addition of cyanobacterial biomass during autumn caused a large increase in ferrous iron-oxidizing archaea while diatom biomass amendment during spring caused minor changes in the microbial community. Considering that OTUs sharing lineages with acidophilic microorganisms had a high relative abundance during autumn, it was suggested that specific niches developed in sediment microenvironments. These findings highlight the importance of nitrogen cycling and early microbial community changes in the sediment due to sinking phytoplankton before potential hypoxia occurs.


Assuntos
Bactérias/isolamento & purificação , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Fitoplâncton/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Biomassa , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Eutrofização , Sedimentos Geológicos/química , Nitratos/análise , Nitratos/metabolismo , Nitritos/análise , Nitritos/metabolismo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
4.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076195

RESUMO

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds.IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans.


Assuntos
Automação Laboratorial/métodos , Bactérias/metabolismo , Aderência Bacteriana , Metais/metabolismo , Microscopia/métodos , Sulfetos/metabolismo , Acidithiobacillus/metabolismo , Algoritmos , Automação Laboratorial/instrumentação , Biofilmes/crescimento & desenvolvimento , Cobre/metabolismo , Ferro/metabolismo , Consórcios Microbianos , Enxofre/metabolismo
5.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150517

RESUMO

Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.


Assuntos
Bactérias/genética , Genoma Bacteriano , Ferro/metabolismo , Proteoma , RNA Bacteriano/genética , Transcriptoma , Bactérias/classificação , Bactérias/metabolismo , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Proteômica , RNA Bacteriano/metabolismo
6.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28978732

RESUMO

An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats.


Assuntos
Diatomáceas/genética , Eutrofização , Sedimentos Geológicos/análise , Metagenoma , Água do Mar/análise , Biomassa , Diatomáceas/fisiologia , Europa (Continente) , Fitoplâncton/genética , Fitoplâncton/fisiologia , RNA/análise , Estações do Ano
7.
Biodegradation ; 28(4): 287-301, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577026

RESUMO

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.


Assuntos
Processos Autotróficos , Temperatura Baixa , Desnitrificação , Elétrons , Tiocianatos/farmacologia , Tiossulfatos/farmacologia , Aerobiose , Anaerobiose , Processos Autotróficos/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Reatores Biológicos/microbiologia , Desnitrificação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Filogenia
8.
Microbiology (Reading) ; 162(8): 1422-1434, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230583

RESUMO

Extremely acidophilic microorganisms (optimum growth pH of ≤3) maintain a near neutral cytoplasmic pH via several homeostatic mechanisms, including an inside positive membrane potential created by potassium ions. Transcriptomic responses to pH stress in the thermoacidophilic archaeon, Sulfolobus acidocaldarius were investigated by growing cells without added sodium and/or potassium ions at both optimal and sub-optimal pH. Culturing the cells in the absence of added sodium or potassium ions resulted in a reduced growth rate compared to full-salt conditions as well as 43 and 75 significantly different RNA transcript ratios, respectively. Differentially expressed RNA transcripts during growth in the absence of added sodium ions included genes coding for permeases, a sodium/proline transporter and electron transport proteins. In contrast, culturing without added potassium ions resulted in higher RNA transcripts for similar genes as a lack of sodium ions plus genes related to spermidine that has a general role in response to stress and a decarboxylase that potentially consumes protons. The greatest RNA transcript response occurred when S. acidocaldarius cells were grown in the absence of potassium and/or sodium at a sub-optimal pH. These adaptations included those listed above plus osmoregulated glucans and mechanosensitive channels that have previously been shown to respond to osmotic stress. In addition, data analyses revealed two co-expressed IclR family transcriptional regulator genes with a previously unknown role in the S. acidocaldarius pH stress response. Our study provides additional evidence towards the importance of potassium in acidophile growth at acidic pH.


Assuntos
Potássio/metabolismo , Sódio/metabolismo , Sulfolobus acidocaldarius/crescimento & desenvolvimento , Sulfolobus acidocaldarius/metabolismo , Proteínas de Transporte/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Mecanorreceptores/fisiologia , Pressão Osmótica/fisiologia , Espermidina/metabolismo , Sulfolobus acidocaldarius/genética , Transativadores/genética
9.
Extremophiles ; 20(6): 903-913, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27783177

RESUMO

Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.


Assuntos
Acidithiobacillus/genética , Resposta ao Choque Frio , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , Acidithiobacillus/metabolismo , Adaptação Fisiológica , Concentração de Íons de Hidrogênio , RNA Mensageiro/metabolismo
10.
Environ Sci Technol ; 50(23): 12808-12815, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934286

RESUMO

After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.


Assuntos
RNA Ribossômico 16S , Sulfetos , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/química , Compostos de Sulfidrila/química
11.
Proc Biol Sci ; 282(1817): 20152025, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26468249

RESUMO

Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.


Assuntos
Copépodes/crescimento & desenvolvimento , Sedimentos Geológicos/química , Oxigênio/metabolismo , Rotíferos/crescimento & desenvolvimento , Águas Salinas/química , Anaerobiose , Animais , Oceanos e Mares , Óvulo/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento
13.
Appl Microbiol Biotechnol ; 98(19): 8133-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104030

RESUMO

Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.


Assuntos
Ácidos/metabolismo , Bactérias/metabolismo , Biotecnologia , Metais/metabolismo , Bactérias/genética
14.
Res Microbiol ; 175(1-2): 104135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37678513

RESUMO

Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.


Assuntos
Ferro , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Genômica/métodos , Proteobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
15.
Front Microbiol ; 15: 1393538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912348

RESUMO

The world's oceans are challenged by climate change linked warming with typically highly populated coastal areas being particularly susceptible to these effects. Many studies of climate change on the marine environment use large, short-term temperature manipulations that neglect factors such as long-term adaptation and seasonal cycles. In this study, a Baltic Sea 'heated' bay influenced by thermal discharge since the 1970s from a nuclear reactor (in relation to an unaffected nearby 'control' bay) was used to investigate how elevated temperature impacts surface water microbial communities and activities. 16S rRNA gene amplicon based microbial diversity and population structure showed no difference in alpha diversity in surface water microbial communities, while the beta diversity showed a dissimilarity between the bays. Amplicon sequencing variant relative abundances between the bays showed statistically higher values for, e.g., Ilumatobacteraceae and Burkholderiaceae in the heated and control bays, respectively. RNA transcript-derived activities followed a similar pattern in alpha and beta diversity with no effect on Shannon's H diversity but a significant difference in the beta diversity between the bays. The RNA data further showed more elevated transcript counts assigned to stress related genes in the heated bay that included heat shock protein genes dnaKJ, the co-chaperonin groS, and the nucleotide exchange factor heat shock protein grpE. The RNA data also showed elevated oxidative phosphorylation transcripts in the heated (e.g., atpHG) compared to control (e.g., atpAEFB) bay. Furthermore, genes related to photosynthesis had generally higher transcript numbers in the control bay, such as photosystem I (psaAC) and II genes (psbABCEH). These increased stress gene responses in the heated bay will likely have additional cascading effects on marine carbon cycling and ecosystem services.

16.
Front Microbiol ; 15: 1369102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596378

RESUMO

Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.

17.
Appl Environ Microbiol ; 79(3): 951-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183980

RESUMO

The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Enxofre/metabolismo , Acidithiobacillus/crescimento & desenvolvimento , Biologia Computacional , Cobre/metabolismo , Meios de Cultura/química , Compostos Ferrosos/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Redes e Vias Metabólicas/genética , Oxirredução
18.
Appl Environ Microbiol ; 79(7): 2172-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354702

RESUMO

Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu(2+) included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H(2)S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S(0) to Fe(3+) via a respiratory chain that includes a bc(1) complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations.


Assuntos
Acidithiobacillus/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Anaerobiose , Perfilação da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Proteoma , Transcriptoma
19.
Extremophiles ; 17(4): 689-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712908

RESUMO

Maintenance of a circumneutral intracellular pH is important for any organism. Acidophilic microorganisms thrive at low pH while maintaining their intracellular pH around 6.5. However, the mechanisms contributing to acidophile pH homeostasis are not well characterized. The authors investigated the proteomic response and cytoplasmic membrane fatty acid profiles of Acidithiobacillus caldus toward three pH values: 1.1, 2.5, and 4.0. Major rearrangements were observed but lower pH elicited larger changes. Differentially expressed transcription factors suggested tight transcriptional control of pH induced genes. Enzymes involved in sulfur metabolism were up-regulated at pH 1.1 suggesting either that: (1) cells required more energy for maintenance or (2) increased metabolic activity was a specific acid stress response to export intracellular protons via 1° electron transport proton pumps. Furthermore, glutamate decarboxylase, an important enzyme in Escherichia coli acid resistance, was uniquely expressed at pH 1.1. Other proteins previously shown to be involved in neutrophilic acid response, such as spermidine synthase, PspA, and toluene tolerance protein, were differentially expressed in At. caldus but require further investigation to show a direct link to pH homeostasis. Their roles in acidophilic organisms are discussed. Active modulation of fatty acid profiles was detected and suggested a more rigid membrane at low pH.


Assuntos
Acidithiobacillus/metabolismo , Prótons , Estresse Fisiológico , Acidithiobacillus/genética , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Proteoma/genética , Proteoma/metabolismo , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Extremophiles ; 17(1): 75-85, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143658

RESUMO

Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.


Assuntos
Acidithiobacillus/crescimento & desenvolvimento , Modelos Biológicos , Thermoplasmales/crescimento & desenvolvimento , Microbiologia da Água , Poluentes Químicos da Água/farmacologia , Zinco/farmacologia , Acidithiobacillus/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Thermoplasmales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA