Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 65, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978183

RESUMO

Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.


Assuntos
Vesículas Extracelulares , Receptor 4 Toll-Like , Humanos , Proteínas Adaptadoras de Transporte Vesicular , Escherichia coli , Macrófagos , Replicação Viral
2.
Proc Natl Acad Sci U S A ; 117(16): 9042-9053, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241891

RESUMO

RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferon Tipo I/genética , Proteínas de Membrana Transportadoras/metabolismo , RNA não Traduzido/metabolismo , Infecções Respiratórias/imunologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adulto , Idoso , Buffy Coat/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/sangue , Interferon Tipo I/imunologia , Macrófagos , Masculino , Pessoa de Meia-Idade , Fosforilação/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , RNA não Traduzido/sangue , RNA não Traduzido/genética , RNA-Seq , Infecções Respiratórias/sangue , Infecções Respiratórias/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Adulto Jovem
3.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208193

RESUMO

Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.


Assuntos
Serina Endopeptidases , Humanos , Flagelina/farmacologia , Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Lipopolissacarídeos/farmacologia , RNA Mensageiro , SARS-CoV-2 , Serina Endopeptidases/genética
4.
Front Immunol ; 13: 827760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359920

RESUMO

Humans can be infected by zoonotic avian, pandemic and seasonal influenza A viruses (IAVs), which differ by receptor specificity and conformational stability of their envelope glycoprotein hemagglutinin (HA). It was shown that receptor specificity of the HA determines the tropism of IAVs to human airway epithelial cells, the primary target of IAVs in humans. Less is known about potential effects of the HA properties on viral attachment, infection and activation of human immune cells. To address this question, we studied the infection of total human peripheral blood mononuclear cells (PBMCs) and subpopulations of human PBMCs with well characterized recombinant IAVs differing by the HA and the neuraminidase (NA) but sharing all other viral proteins. Monocytes and all subpopulations of lymphocytes were significantly less susceptible to infection by IAVs with avian-like receptor specificity as compared to human-like IAVs, whereas plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells were equally susceptible to IAVs with avian-like and human-like receptor specificity. This tropism correlated with the surface expression of 2-3-linked sialic acids (avian-type receptors) and 2-6-linked sialic acids (human-type receptors). Despite a reduced infectivity of avian-like IAVs for PBMCs, these viruses were not less efficient than human-like IAVs in terms of cell activation as judged by the induction of cellular mRNA of IFN-α, CCL5, RIG-I, and IL-6. Elevated levels of IFN-α mRNA were accompanied by elevated IFN-α protein secretion in primary human pDC. We found that high basal expression in monocytes of antiviral interferon-induced transmembrane protein 3 (IFITM3) limited viral infection in these cells. siRNA-mediated knockdown of IFITM3 in monocytes demonstrated that viral sensitivity to inhibition by IFITM3 correlated with the conformational stability of the HA. Our study provides new insights into the role of host- and strain-specific differences of HA in the interaction of IAVs with human immune cells and advances current understanding of the mechanisms of viral cell tropism, pathogenesis and markers of virulence.


Assuntos
Hemaglutininas , Vírus da Influenza A , Animais , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Leucócitos Mononucleares/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ácidos Siálicos/metabolismo , Replicação Viral/genética
5.
Front Immunol ; 12: 658895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126343

RESUMO

The innate immune system senses viral and bacterial ribonucleic acid (RNA) via pattern recognition receptors (PRR) leading to subsequent activation of the immune system. One group of RNA sensors is formed by endosomal/lysosomal Toll-like receptors (TLR) such as TLR7 and TLR8. During viral or bacterial infection, immunostimulatory RNA is part of the pathogen reaching the endosomal/lysosomal compartment after cellular uptake. Synthetic single-stranded or double-stranded oligoribonucleotides (ORN) can mimic RNA from pathogens and are widely used as activating ligands for TLR7 and TLR8. However, one limitation in the use of synthetic ORN driven immune stimulation is the need for transfection reagents for RNA delivery into cells. Here we demonstrate that the conjugation of cholesterol to a double-stranded version of immunostimulatory RNA40 strongly enhanced RNA uptake into monocytes and plasmacytoid dendritic cells when compared to naked RNA. Cholesterol-conjugated RNA (RNA-chol) formed nanoparticles that were superior to RNA-liposomes complexes in regard to induction of type I interferon from human and murine plasmacytoid dendritic cells as well as proinflammatory cytokine production (e.g. TNF-α, IL12p70 or IL-6) in human monocytes. Furthermore, the RNA40-chol induced cytokines in human monocyte cultures supported TH1 and TFH cell differentiation underscoring a strong adjuvant function of RNA-chol nanoparticles for adaptive immune responses. In summary, cholesterol-conjugated immunostimulatory RNA forms nanoparticles and functions as a potent immune adjuvant in human and murine immune cells. It further simplifies the use of immunostimulatory RNA by avoiding the need for liposomal transfection reagents.


Assuntos
Colesterol/imunologia , Imunidade Inata/imunologia , Glicoproteínas de Membrana/imunologia , Nanopartículas/administração & dosagem , RNA/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Oligorribonucleotídeos/imunologia
6.
NPJ Vaccines ; 5(1): 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802410

RESUMO

Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.

7.
J Virol Methods ; 175(1): 60-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21539860

RESUMO

Porcine endogenous retroviruses (PERV) represent a risk for xenotransplantation using pig cells, tissues or organs. PERV-A and PERV-B are present in the genome of all pigs and both infect human cells in vitro. PERV-C infects only pig cells and it is integrated in the genome of most, but not all pigs. Recombinants between PERV-A and PERV-C were described that infect human cells and replicate at high titres. To avoid such recombinations, PERV-C positive animals should not be used for breeding animals suited for xenotransplantation. In order to detect PERV-C positive pigs, different methods were developed such as specific PCRs using different primers, a highly sensitive nested PCR and a real-time PCR allowing measurement of proviral copy numbers. The real-time PCR was found to be useful to discriminate between contamination and actual provirus copies. The PCRs were optimized and their sensitivity was determined. Screening can be started with PCR1, if the result is negative, PCR2 to PCR5 or the nested PCR should be used, if the result is positive, the real-time PCR should be used to exclude contaminations. All methods were used to evaluate the prevalence of PERV-C and to identify PERV-C free animals. Due to the risk of contamination with cells from other animals testing should be performed with blood cells, not with ear biopsies.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Genoma , Reação em Cadeia da Polimerase/métodos , Infecções por Retroviridae/veterinária , Doenças dos Suínos/virologia , Animais , Células Cultivadas , Primers do DNA , Humanos , Infecções por Retroviridae/diagnóstico , Infecções por Retroviridae/virologia , Suínos , Doenças dos Suínos/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA