Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(8): 4231-4244, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742326

RESUMO

Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/µL, 1 µL) followed by fMLP (1 mg/mL, 1 µL) or vehicle (VEH, saline 0.9%, 1 µL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , N-Formilmetionina Leucil-Fenilalanina/farmacologia , N-Formilmetionina Leucil-Fenilalanina/uso terapêutico , Pilocarpina/uso terapêutico , Ratos Wistar , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/complicações , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Peptídeos/uso terapêutico
2.
Cell Biol Int ; 42(5): 615-623, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29363842

RESUMO

Growth hormone (GH) plays a physiological role in the immune system. In macrophages, GH enhances the production of hydrogen peroxide, superoxide anions, nitric oxide, cytokines, and chemokines, including interferon-γ and macrophage inflammatory protein-1α. However, some of the effects of GH stimulation on the biological functions of macrophages remain to be elucidated. Herein, we showed that in vivo GH treatment resulted in decreased expression of VLA-5 and VLA-6 integrins on the macrophage surface, accompanied by a reduction in macrophage adhesion to extracellular matrix (ECM) ligands, fibronectin, and laminin. Additionally, a decrease in macrophage adhesion to laminin was observed when the cells were treated in vitro with GH. In transwell migration assays, GH-treated macrophages showed increased migration after 6 h. Although in vitro GH treatment did not influence the phagocytic activity of macrophages, when the treatment was performed in vivo, peritoneal macrophages from GH-treated mice showed a higher percentage of phagocytosis and higher phagocytic capacity than cells from control animals. These results led us to analyse the role of insulin-like growth factor-1 (IGF-1), a GH stimulated factor, on macrophage phagocytosis. We observed an increase in phagocytic activity when J774 murine macrophages were treated with IGF-1 for 24 h. Our results revealed an important role for GH in resident macrophage migration and phagocytic activity. Specifically, we demonstrate that IGF-1 may be the GH stimulated factor that induces macrophage phagocytosis in vivo.


Assuntos
Movimento Celular , Hormônio do Crescimento/fisiologia , Macrófagos/imunologia , Fagocitose , Animais , Adesão Celular , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Integrinas/metabolismo , Masculino , Camundongos
3.
Mol Neurobiol ; 58(2): 505-519, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32975651

RESUMO

Status epilepticus (SE) can lead to serious neuronal damage and act as an initial trigger for epileptogenic processes that may lead to temporal lobe epilepsy (TLE). Besides promoting neurodegeneration, neuroinflammation, and abnormal neurogenesis, SE can generate an extensive hypometabolism in several brain areas and, consequently, reduce intracellular energy supply, such as adenosine triphosphate (ATP) molecules. Although some antiepileptic drugs show efficiency to terminate or reduce epileptic seizures, approximately 30% of TLE patients are refractory to regular antiepileptic drugs (AEDs). Modulation of glucose availability may provide a novel and robust alternative for treating seizures and neuronal damage that occurs during epileptogenesis; however, more detailed information remains unknown, especially under hypo- and hyperglycemic conditions. Here, we review several pathways of glucose metabolism activated during and after SE, as well as the effects of hypo- and hyperglycemia in the generation of self-sustained limbic seizures. Furthermore, this study suggests the control of glucose availability as a potential therapeutic tool for SE.


Assuntos
Glucose/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Degeneração Neural/complicações , Degeneração Neural/metabolismo
4.
Mol Neurobiol ; 58(3): 1217-1236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33123979

RESUMO

Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 µL) or glucose (GLU; 1, 2 or 3 mM, 1 µL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.


Assuntos
Glucose/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Morte Celular , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Consolidação da Memória , Neurônios/patologia , Estresse Oxidativo , Pilocarpina , Ratos Wistar , Índice de Gravidade de Doença , Transportador 1 de Glucose-Sódio/metabolismo , Estado Epiléptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA