Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Cell ; 66(3): 358-372.e7, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475871

RESUMO

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.


Assuntos
Envelhecimento/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Hipocampo/enzimologia , Neurônios/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Envelhecimento/genética , Envelhecimento/patologia , Animais , Comportamento Animal , Núcleo Celular/ultraestrutura , Sobrevivência Celular , Cromatina/enzimologia , Cognição , Células HEK293 , Hipocampo/ultraestrutura , Humanos , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ratos Wistar , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Transfecção , Ubiquitina-Proteína Ligases/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983060

RESUMO

Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.


Assuntos
Vesículas Extracelulares , Neurônios , Animais , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163295

RESUMO

Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.


Assuntos
Astrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Fatores Etários , Envelhecimento , Animais , Astrócitos/fisiologia , Encéfalo/metabolismo , Sistema Nervoso Central/fisiologia , Vesículas Extracelulares/fisiologia , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , L-Lactato Desidrogenase/análise , Microglia/metabolismo , Neurônios/fisiologia , Cultura Primária de Células , Ratos , Ratos Wistar , Fatores de Tempo
4.
EMBO Rep ; 20(12): e47743, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31650708

RESUMO

The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoactivation/photoconversion experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin toward the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 (pericentriolar material 1 protein) satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively, the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers, hence sustaining initial neuronal development.


Assuntos
Actinas/metabolismo , Cones de Crescimento/metabolismo , Neurogênese , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centrossomo/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Ratos
5.
Neurobiol Dis ; 113: 82-96, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29427755

RESUMO

Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins. Long-term high fat diet treatment triggers a reduction in hippocampal N-acetyl-aspartate/myo-inositol metabolites ratio and impairs long term potentiation in hippocampal acute slices. Interestingly, these alterations do not correlate with changes in the core neuropathological features of AD, i.e. amyloidosis and Tau hyperphosphorylation. The data suggest that AD phenotypes associated with high fat diet treatment seen in other models for AD might be exacerbated because of the overexpressing systems used to study the effects of familial AD mutations. Our work supports the increasing insight that knock-in mice might be more relevant models to study the link between metabolic disorders and AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Doença de Alzheimer/patologia , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/tendências , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
7.
Stroke ; 47(1): 206-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26628388

RESUMO

BACKGROUND AND PURPOSE: 3ß-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice. METHODS: Dhcr24(+/-) and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed. RESULTS: Dhcr24(+/-) mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in Dhcr24(+/-) mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [(3)H]-glutamate uptake in cultured astrocytes. CONCLUSIONS: These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Androstenos/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Acidente Vascular Cerebral/genética
8.
EMBO J ; 31(8): 1893-903, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22354041

RESUMO

The precise polarization and orientation of developing neurons is essential for the correct wiring of the brain. In pyramidal excitatory neurons, polarization begins with the sprouting of opposite neurites, which later define directed migration and axo-dendritic domains. We here show that endogenous N-cadherin concentrates at one pole of the newborn neuron, from where the first neurite subsequently emerges. Ectopic N-cadherin is sufficient to favour the place of appearance of the first neurite. The Golgi and centrosome move towards this newly formed morphological pole in a second step, which is regulated by PI3K and the actin/microtubule cytoskeleton. Moreover, loss of function experiments in vivo showed that developing neurons with a non-functional N-cadherin misorient their cell axis. These results show that polarization of N-cadherin in the immediate post-mitotic stage is an early and crucial mechanism in neuronal polarity.


Assuntos
Caderinas/metabolismo , Divisão Celular , Polaridade Celular , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Neuritos/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Ratos
9.
EMBO J ; 31(7): 1764-73, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22343944

RESUMO

The deregulation of brain cholesterol metabolism is typical in acute neuronal injury (such as stroke, brain trauma and epileptic seizures) and chronic neurodegenerative diseases (Alzheimer's disease). Since both conditions are characterized by excessive stimulation of glutamate receptors, we have here investigated to which extent excitatory neurotransmission plays a role in brain cholesterol homeostasis. We show that a short (30 min) stimulation of glutamatergic neurotransmission induces a small but significant loss of membrane cholesterol, which is paralleled by release to the extracellular milieu of the metabolite 24S-hydroxycholesterol. Consistent with a cause-effect relationship, knockdown of the enzyme cholesterol 24-hydroxylase (CYP46A1) prevented glutamate-mediated cholesterol loss. Functionally, the loss of cholesterol modulates the magnitude of the depolarization-evoked calcium response. Mechanistically, glutamate-induced cholesterol loss requires high levels of intracellular Ca(2+), a functional stromal interaction molecule 2 (STIM2) and mobilization of CYP46A1 towards the plasma membrane. This study underscores the key role of excitatory neurotransmission in the control of membrane lipid composition, and consequently in neuronal membrane organization and function.


Assuntos
Colesterol/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol 24-Hidroxilase , Técnicas de Silenciamento de Genes , Ácido Glutâmico/farmacologia , Hipocampo/efeitos dos fármacos , Hidroxicolesteróis/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Molécula 2 de Interação Estromal
10.
J Cell Sci ; 127(Pt 20): 4409-19, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128563

RESUMO

Final morphological polarization of neurons, with the development of a distinct axon and several dendrites, is preceded by phases where they have a non-polarized architecture. The earliest of these phases is that of the round neuron arising from the last mitosis. A second non-polarized stage corresponds to the bipolar neuron, with two morphologically identical neurites. Both phases have their distinctive relevance in the establishment of neuronal polarity. During the round cell stage, a decision is made as to where from the cell periphery a first neurite will form, thus creating the first sign of asymmetry. At the bipolar stage a decision is made as to which of the two neurites becomes the axon in neurons polarizing in vitro, and the leading edge in neurons in situ. In this study, we analysed cytoskeletal and membrane dynamics in cells at these two 'pre-polarity' stages. By means of time lapse imaging in dissociated hippocampal neurons and ex vivo cortical slices, we show that both stages are characterized by polarized intracellular arrangements. However, the stages have distinct temporal hierarchies: polarized actin dynamics marks the site of first polarization in round cells, whereas polarized membrane dynamics precedes asymmetric growth in the bipolar stage.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurogênese , Neurônios/fisiologia , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Camundongos , Técnicas de Cultura de Órgãos , Gravidez , Transporte Proteico , Ratos , Ratos Endogâmicos , Imagem com Lapso de Tempo
11.
EMBO Rep ; 15(10): 1036-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25223281

RESUMO

Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.


Assuntos
Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Doença de Huntington/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Hormônios Esteroides Gonadais/química , Hormônios Esteroides Gonadais/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Metabolismo dos Lipídeos , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia
12.
J Neurosci ; 34(7): 2477-92, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523539

RESUMO

PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.


Assuntos
Axônios/fisiologia , Gangliosídeos/metabolismo , Regeneração Nervosa/fisiologia , Neuraminidase/metabolismo , Neurônios Retinianos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axotomia , Ativação Enzimática/fisiologia , Imuno-Histoquímica , Masculino , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transfecção
13.
Neurobiol Dis ; 73: 319-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25251606

RESUMO

Niemann-Pick disease type A (NPDA) is a fatal disease due to mutations in the acid sphingomyelinase (ASM) gene, which triggers the abnormal accumulation of sphingomyelin (SM) in lysosomes and the plasma membrane of mutant cells. Although the disease affects multiple organs, the impact on the brain is the most invalidating feature. The mechanisms responsible for the cognitive deficit characteristic of this condition are only partially understood. Using mice lacking the ASM gene (ASMko), a model system in NPDA research, we report here that high sphingomyelin levels in mutant neurons lead to low synaptic levels of phosphoinositide PI(4,5)P2 and reduced activity of its hydrolyzing phosphatase PLCγ, which are key players in synaptic plasticity events. In addition, mutant neurons have reduced levels of membrane-bound MARCKS, a protein required for PI(4,5)P2 membrane clustering and hydrolysis. Intracerebroventricular infusion of a peptide that mimics the effector domain of MARCKS increases the content of PI(4,5)P2 in the synaptic membrane and ameliorates behavioral abnormalities in ASMko mice.


Assuntos
Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Proteínas de Membrana/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Doença de Niemann-Pick Tipo A/complicações , Doença de Niemann-Pick Tipo A/tratamento farmacológico , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Injeções Intraventriculares , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Mutação/genética , Substrato Quinase C Rico em Alanina Miristoilada , Doença de Niemann-Pick Tipo A/metabolismo , Doença de Niemann-Pick Tipo A/patologia , Fosfolipase C gama/metabolismo , Esfingomielina Fosfodiesterase/genética , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
14.
J Cell Sci ; 126(Pt 5): 1268-77, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23345401

RESUMO

Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular , Células Cultivadas , Eletroporação , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez
15.
J Biol Chem ; 287(2): 1100-11, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22086926

RESUMO

Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-ß (Aß) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aß generation, without affecting Notch cleavage.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos
16.
J Cell Sci ; 124(Pt 8): 1308-15, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21444756

RESUMO

A developmentally regulated loss of membrane cholesterol was reported to be sufficient and necessary for activation of neurotrophic tyrosine kinase receptor type 2 (TrkB) in aged neurons in vitro. However, TrkB activity in low cholesterol neurons remains confined to detergent-resistant membrane fractions, indicating that additional lipidic changes occur with age. Analysis of neuronal lipids at different developmental stages revealed a sharp increase in sphingomyelin (SM) during neuronal maturation. Reduction of SM abrogated TrkB activation in mature neurons, whereas increasing SM in immature neurons triggered receptor activation. TrkB activity in high SM background was the consequence of enhanced phosphorylation in the detergent-resistant fractions and increased Rac1-mediated endocytosis. The current results reveal developmental upregulation of SM as an important mechanism for sustaining TrkB activity in the mature nervous system, in addition to the presence of brain-derived neurotrophic factor (BDNF).


Assuntos
Endocitose , Neurônios/metabolismo , Receptor trkB/metabolismo , Esfingomielinas/metabolismo , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor trkB/genética , Proteínas rac1 de Ligação ao GTP/genética
17.
Biol Cell ; 104(9): 533-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22554054

RESUMO

BACKGROUND INFORMATION: PIX proteins are exchange factors for Rac and Cdc42 GTPases that are differentially expressed in the brain, where they are implicated in neuronal morphogenesis. The PIX family includes the two members αPIX and ßPIX, and the gene of αPIX is mutated in patients with intellectual disability. RESULTS: We have analysed the expression of PIX proteins in the developing brain and addressed their role during early hippocampal neuron development. Mass spectrometry identified several ßPIX isoforms and a major p75 αPIX isoform in brain and hippocampal cultures. PIX proteins expression increased with time during neuronal differentiation in vitro. The PIX partners GIT1 and GIT2 are also found in brain and their expression was increased during neuronal differentiation. We found that αPIX, but not ßPIX, was required for proper hippocampal neuron differentiation, since silencing of αPIX specifically hampered dendritogenesis and axonal branching. Interestingly, the depletion of GIT2 but not GIT1 mimicked the phenotype observed after αPIX knock-down. Over-expression of αPIX specifically enhanced dendritic branching, while both αPIX and ßPIX over-expression affected axonal morphology. Again, only over-expression of GIT2, but not GIT1, affected neuritic morphology. CONCLUSIONS: The results indicate that αPIX and GIT2 are required for neuronal differentiation, and suggest that they are part of the same pathway, while GIT1 and ßPIX are dispensable for early hippocampal neurons development.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho
18.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059474

RESUMO

In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aß or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Camundongos Transgênicos , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Suscetibilidade a Doenças
19.
Proc Natl Acad Sci U S A ; 106(36): 15344-9, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706427

RESUMO

Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics. Gadkin overexpression induced the dispersion of transferrin (Tf)- and Rab4-positive EVs to the cell periphery, whereas KIF5B-depleted cells displayed a perinuclear concentration. Functional experiments suggest that the role of Gadkin as a regulator of endosomal membrane traffic critically depends on complex formation with both AP-1 and KIF5. Our data thus provide a direct molecular link between TGN-derived EVs and the microtubule-based cytoskeleton.


Assuntos
Endossomos/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Células COS , Chlorocebus aethiops , Cromatografia de Afinidade , Células HeLa , Humanos , Imunoprecipitação , Microscopia de Fluorescência
20.
Front Cell Dev Biol ; 10: 1031007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274849

RESUMO

One of the characteristics of aging is a gradual hypo-responsiveness of cells to extrinsic stimuli, mainly evident in the pathways that are under hormone control, both in the brain and in peripheral tissues. Age-related resistance, i.e., reduced response of receptors to their ligands, has been shown to Insulin and also to leptin, thyroid hormones and glucocorticoids. In addition, lower activity has been reported in aging for ß-adrenergic receptors, adenosine A2B receptor, and several other G-protein-coupled receptors. One of the mechanisms proposed to explain the loss of sensitivity to hormones and neurotransmitters with age is the loss of receptors, which has been observed in several tissues. Another mechanism that is finding more and more experimental support is related to the changes that occur with age in the lipid composition of the neuronal plasma membrane, which are responsible for changes in the receptors' coupling efficiency to ligands, signal attenuation and pathway desensitization. In fact, recent works have shown that altered membrane composition-as occurs during neuronal aging-underlies reduced response to glutamate, to the neurotrophin BDNF, and to insulin, all these leading to cognition decay and epigenetic alterations in the old. In this review we present evidence that altered functions of membrane receptors due to altered plasma membrane properties may be a triggering factor in physiological decline, decreased brain function, and increased vulnerability to neuropathology in aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA