RESUMO
OBJECTIVE: Evaluate the ability of an extended version of the 3 MTM Eargage to estimate the earcanal size and assess the likelihood that a particular earplug can fit an individual's earcanal, ultimately serving as a tool for selecting earplugs in the field. DESIGN: Earcanal morphology, assessed through earcanal earmolds scans, is compared to earcanal size assessed with the extended eargage (EE) via box plots and Pearson linear correlations coefficients. Relations between attenuation measured on participants (for 6 different earplugs) and their earcanal size assessed with the EE are established via comparison tests. STUDY SAMPLE: 121 participants exposed to occupational noise (103 men, 18 women, mean age 47 years). RESULTS: The earcanal size assessed with the EE allows for estimating the area of the earcanal's first bend cross-section (correlation coefficient r = 0.533, p < 0.001). Extremely large earcanals (12.7% of earcanals in our sample) lead to significantly lower earplug attenuation (potentially inadequate) than smaller earcanals. CONCLUSIONS: The EE is a simple and inexpensive tool easily deployable in the field to assist earplugs selection. When extended with sizes larger than the maximum size of the commercial tool, it allows for detecting individuals with extremely large earcanals who are most likely to be under-protected.
RESUMO
The use of passive earplugs is often associated with the occlusion effect: a phenomenon described as the increased auditory perception of one's own physiological noise at low frequencies. As a notable acoustic discomfort, the occlusion effect penalizes the use and the efficiency of earplugs. This phenomenon is objectively characterized by the increase in sound pressure level in the occluded ear canal compared to the open ear canal. Taking inspiration from acoustic metamaterials, a new design of a three-dimensional printed "meta-earplug," made of four Helmholtz resonators arranged in series, is proposed for achieving near zero objective occlusion effect measured on artificial ear in a broadband frequency range (300 Hz to 1 kHz). For this purpose, the geometry of the meta-earplug is optimized to achieve a null occlusion effect target based on an analytical model of the phenomenon. It results from the optimization process that the input impedance of the meta-earplug medial surface approximately matches the input impedance of the open ear canal, weighted by the ratio of volume velocity imposed by the ear canal wall to the ear canal cavity between open and occluded cases. Acoustic properties of the meta-earplug are also shown to significantly improve its sound attenuation at the piston-like mode of the system.
RESUMO
The sound attenuation of double hearing protectors (DHPs), earplugs combined with earmuffs, generally falls short of the sum of each single protector's attenuation when used independently. This phenomenon, referred to as the DHP effect, is found to be related to structure-borne sound transmission involving the outer ear and can also be observed on acoustic test fixtures (ATFs). At present, it still remains not fully understood, and no available model can help demonstrate the associated sound transmission mechanisms. In this work, a finite element model is proposed to study the DHP effect on an ATF between 100 Hz and 5 kHz. Power balances are calculated with selected configurations of the ATF in order to (i) quantify the contribution of each sound path, and study the effects of (ii) the artificial skin and (iii) acoustic excitation on the ATF exterior boundaries. The DHP effect is shown to originate from the structure-borne sound power injected from the ATF boundaries and/or earmuff cushion. The important influence of earcanal wall vibration is highlighted when the skin is accounted for. The simulation results allow for gaining more insight into the sound transmission through a DHP/ATF system.
Assuntos
Dispositivos de Proteção das Orelhas , Audição , Acústica , Limiar Auditivo , Análise de Elementos FinitosRESUMO
Designing earplugs adapted for the widest number of earcanals requires acoustical test fixtures (ATFs) geometrically representative of the population. Most existing ATFs are equipped with unique sized straight cylindrical earcanals, considered representative of average human morphology, and are therefore unable to assess how earplugs can fit different earcanal morphologies. In this study, a methodology to cluster earcanals as a function of their morphologies with the objective of designing artificial ears dedicated to sound attenuation measurement is developed and applied to a sample of Canadian workers' earcanals. The earcanal morphologic indicators that correlate with the attenuations of six models of commercial earplugs are first identified. Three clusters of earcanals are then produced using statistical analysis and an artificial intelligence-based algorithm. In the sample of earcanals considered in this study, the identified clusters differ by the earcanal length and by the surface and ovality of the first bend cross section. The cluster that comprises earcanals with small girth and round first bend cross section shows that earplugs induced attenuation significantly higher than the cluster that includes earcanals with a bigger and more oval first bend cross section.
Assuntos
Aprendizado Profundo , Perda Auditiva Provocada por Ruído , Humanos , Dispositivos de Proteção das Orelhas , Inteligência Artificial , Canadá , Análise por ConglomeradosRESUMO
The occlusion effect (OE) occurs when the earcanal becomes occluded by an in-ear device, sometimes leading to discomforts experienced by the users due to the augmented perception of physiological noises, or to a distorted perception of one's own voice. The OE can be assessed objectively by measuring the amplification of the low-frequency sound pressure level (SPL) in the earcanal using in-ear microphones. However, as revealed by methodological discrepancies found in past studies, the measurement of this objective occlusion effect (OEobj) is not standardized. With the goal of proposing a robust yet simple methodology adapted for field assessment, three experimental aspects are investigated: (i) stimulation source and the stimulus's characteristics to induce the phenomenon, (ii) measurement method of the SPL in earcanal, (iii) indicator to quantify the OEobj. To do so, OEobj is measured on human participants in laboratory conditions. Results obtained with a specific insert device suggest using the participant's own voice combined with simultaneous measurements of the SPLs based on the noise reduction method and using a single value indicator leads to a simple yet robust methodology to assess OEobj. Further research is necessary to validate the results with other devices and to generalize the methodology for field assessment.
Assuntos
Dispositivos de Proteção das Orelhas , Voz , Humanos , Ruído/efeitos adversos , SomRESUMO
The use of earplugs is commonly associated with an increased perception of the bone-conducted part of one's own physiological noise. This phenomenon is referred to as occlusion effect and is most prominent at low frequencies. Several factors influence the occlusion effect, such as the ear anatomy; the bone-conducted stimulation; and the type of occlusion device and its fit, insertion depth, and material properties. The latter factor is of great interest to potentially reduce the occlusion effect of passive earplugs. This paper investigates the mechanism(s) of contribution of earplugs to the objective occlusion effect. A two-dimensional axi-symmetric finite element model of the outer ear is used and investigated in an electro-acoustic framework. Simulation results are shown to compare reasonably well with measurement data, which qualifies the model to study the influence of earplugs on the occlusion effect. Two mechanisms are highlighted: (i) a Poisson effect induced by the normal component of the earcanal wall vibration and (ii) a longitudinal motion caused by the tangential component of the earcanal wall vibration. By varying the geometry of the surrounding tissues, the spatial distribution of the earcanal wall vibration is shown to influence the contribution of the earplug to the occlusion effect.
Assuntos
Dispositivos de Proteção das Orelhas , Ruído , Acústica , Simulação por Computador , VibraçãoRESUMO
Earplugs are a common form of protection for workers exposed to hazardous noise levels. Their comfort directly impacts the effective protection by influencing their consistent and correct use. Nevertheless, comfort definition may vary according to the studies. Thus, a previous review of the literature has shown that to improve our understanding of perceived comfort and to reduce measurement variability, it is advisable to consider comfort through a multidimensional construct (physical, acoustical, functional and psychological). On this basis, the COPROD (COnfort des PROtections auDitives/COmfort of hearing PROtection Devices) questionnaire was developed. It is intended for people working in noisy environments. Nine earplug models were evaluated by 118 participants over a six-week period. This paper presents the successive analyses that were used to validate the structure of the questionnaire and confirm the relevance of the proposed dimensions and of the addressed items. First results suggest a preference for custom moulded earplugs. Practitioner Summary: Earplugs comfort conditions the hearing protection of the users. As the definition of comfort can vary between studies, the COPROD questionnaire was developed to jointly evaluate all its dimensions. Nine earplugs models were evaluated by 118 participants during six weeks. This paper presents the validation process of the questionnaire. Abbreviations: COPROD: COnfort des PROtections auDitives/COmfort of hearing PROtection Devices; HPD: hearing protection devices; SEM: structural equation modeling; CFA: confirmatory factor analysis; GOF: goodness of fit; RMSEA: root mean square error of approximation; CFI: comparison fit index; SRMR: standardised root mean square residual.
Assuntos
Dispositivos de Proteção das Orelhas , Perda Auditiva Provocada por Ruído , Análise Fatorial , Perda Auditiva Provocada por Ruído/prevenção & controle , Humanos , Exame Físico , Inquéritos e QuestionáriosRESUMO
The objective occlusion effect induced by bone-conducted stimulation refers to the low frequency acoustic pressure increase that results from occluding the ear canal opening. This phenomenon is commonly interpreted as follows: the bone-conducted sound "leaks" through the earcanal opening and is "trapped" by the occlusion device. This instinctive interpretation misrepresents the fundamental mechanism of the occlusion effect related to the earcanal impedance increase and already highlighted by existing electro-acoustic models. However, these models simplify the earcanal wall vibration (i.e., the origin of the phenomenon) to a volume velocity source which, in the authors' opinion, (i) hinders an exhaustive comprehension of the vibro-acoustic behavior of the system, (ii) hides the influence of the earcanal wall vibration distribution, and (iii) could blur the interpretation of the occlusion effect. This paper analyzes, illustrates, and interprets the vibro-acoustic behavior of the open and occluded earcanal using an improved finite element model of an outer ear in conjunction with an associated electro-acoustic model developed in this work. The two models are very complementary to dissect physical phenomena and to highlight the influence of the earcanal wall vibration distribution, characterized here by its curvilinear centroid position, on the occlusion effect.
Assuntos
Meato Acústico Externo , Som , Estimulação Acústica , Acústica , VibraçãoRESUMO
The generalized cross correlation (GCC) is an efficient technique for performing acoustic imaging. However, it suffers from important limitations such as a large main lobe width for noise sources with low frequency content or a high amplitude of side lobes for noise sources with high frequencies. Prefiltering operation of the microphone signals by a weighting function can be used to improve the acoustic image. In this work, two weighting functions based on PHAse Transform (PHAT) improvements are used. The first adds an exponent to the PHAT expression (ρ-PHAT), while the second adds the minimum value of the coherence function to the denominator (ρ-PHAT-C). Numerical acoustic images obtained with the GCC and those weighting functions are compared and quantitatively assessed thanks to a metric based on a covariance ellipse, which surrounds either the main lobe or the side lobes. The weighting function ρ-PHAT-C provides the smallest surface ellipses especially when the arithmetic of the GCC is replaced by the geometric mean (GEO). Experimental measurements are carried out in a hemi-anechoic room and a reverberant chamber where two loudspeakers were set in front of microphone array. The acoustic images obtained confirm that the ρ-PHAT-C with the GEO outperforms the GCC, GCC-PHAT, and GCC ρ-PHAT.
RESUMO
In-ear devices are used in a wide range of applications for which the device's usability and/or efficiency is strongly related to comfort aspects that are influenced by the mechanical interaction between the device and the walls of the earcanal. Although the displacement of the earcanal walls due to the insertion of the device is an important characteristic of this interaction, existing studies on this subject are very limited. This paper proposes a method to estimate this displacement in vivo using a registration technique on magnetic resonance images. The amplitude, the location and the direction of the earcanal wall displacement are computed for four types of earplugs used by one participant. These displacements give indications on how each earplug deforms the earcanal for one specific earcanal geometry and one specific earplug insertion. Although the displacement due to a specific earplug family cannot be generalized using the results of this paper, the latter help to understand where, how much, and how each studied earplug deforms the earcanal of the participant. This method is revealed as a promising tool to investigate further acoustical and physical comfort aspects of in-ear devices.
Assuntos
Meato Acústico Externo/diagnóstico por imagem , Dispositivos de Proteção das Orelhas , Imageamento por Ressonância Magnética , Adulto , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , MasculinoRESUMO
Objective: This article presents a comprehensive literature review of past works addressing Hearing Protection Devices (HPD) comfort and to put them into perspective regarding a proposed holistic multidimensional construct of HPD comfort.Design: Literature review.Study samples: Documents were hand searched and Internet searched using "PubMed", "Web of Science", "Google Scholar", "ProQuest Dissertations and Theses Professional", "Scopus" or "Google" search engines. While comfort constructs and measurement methods are reviewed for both earplugs and earmuff types, results and analyses are provided for the earplug type only.Results: This article proposed a multidimensional construct of HPD comfort based on four dimensions: physical, functional, acoustical and psychological. Seen through the prism of the proposed holistic construct of HPD comfort, the main comfort attributes of earplugs have been identified for each comfort dimension.Conclusions: The observed lack of consensus on the definition of HPD comfort in the scientific community makes it difficult to prioritise the importance of comfort attributes yet necessary for future design of comfortable earplugs.
Assuntos
Dispositivos de Proteção das Orelhas , Humanos , Conforto do PacienteRESUMO
Microphone array techniques are an efficient tool to detect acoustic source positions. The delay and sum beamforming is the standard method. In the time domain, the generalized cross-correlation can be used to compute the noise source map. This technique is based on the arithmetic mean of the spatial likelihood functions. In this study, the classical arithmetic mean is replaced by the more standard generalized mean. The noise source maps provide by the arithmetic, geometric and harmonic means are compared in the case of numerical and experimental data obtained in a reverberant room. The geometric and harmonic means provide the best noise source maps with no side lobes and a better source level estimation.
RESUMO
Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.
RESUMO
This paper compares different approaches to model the vibroacoustic behavior of earmuffs at low frequency and investigates their accuracy by comparison with objective insertion loss measurements recently carried out by Boyer et al. [(2014). Appl. Acoust. 83, 76-85]. Two models based on the finite element (FE) method where the cushion is either modeled as a spring foundation (SF) or as an equivalent solid (ES), and the well-known lumped parameters model (LPM) are investigated. Modeling results show that: (i) all modeling strategies are in good agreement with measurements, providing that the characterization of the cushion equivalent mechanical properties are performed with great care and as close as possible to in situ loading, boundary, and environmental conditions and that the frequency dependence of the mechanical properties is taken into account, (ii) the LPM is the most simple modeling strategy, but the air volume enclosed by the earmuff must be correctly estimated, which is not as straightforward as it may seem, (iii) similar results are obtained with the SF and the ES FE-models of the cushion, but the SF should be preferred to predict the earmuff acoustic response at low frequency since it requires less parameters and a less complex characterization procedure.
Assuntos
Acústica , Dispositivos de Proteção das Orelhas , Modelos Teóricos , Ruído/prevenção & controle , Desenho de Equipamento , Análise de Elementos Finitos , Movimento (Física) , Ruído/efeitos adversos , Reprodutibilidade dos Testes , VibraçãoRESUMO
This letter proposes an experimental method to estimate the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field in free-field conditions. Comparisons are made between experiments conducted with this approach, the standard reverberant room method, and numerical simulations using the transfer matrix method. With a simple experimental setup and smaller samples than those required by standards, the results obtained with the proposed approach do not exhibit non-physical trends of the reverberant room method and provide absorption coefficients in good agreement with those obtained by simulations for a laterally infinite material.
RESUMO
Earplugs' comfort is primarily evaluated through cost-effective laboratory evaluations, yet these evaluations often inadequately capture the multidimensional comfort aspects due to design limitations that do not replicate real-world conditions. This paper introduces a novel laboratory method for comprehensive assessment of the multidimensional comfort aspects of earplugs, combining questionnaire-based evaluations and objective perceptual tests within virtual industrial sound environments replicating in-situ noise exposure. Objective perceptual results confirm that the sound environment affect participants' ability to detect alarms in a noisy environment and comprehend speech-in-noise while wearing earplugs. Subjective questionnaire results reveal that the earplugs family has an effect on the primary attributes of the acoustical, physical and functional comfort's dimension. Participants reported the physical dimension as the most important factor they take into account when evaluating earplugs' comfort. The functional dimension was considered the second most important factor by the participants, followed by the psychological dimension, and the acoustical dimension.
Assuntos
Dispositivos de Proteção das Orelhas , Ruído Ocupacional , Humanos , Masculino , Adulto , Feminino , Inquéritos e Questionários , Adulto Jovem , Desenho de EquipamentoRESUMO
Acoustic imaging can be performed using a spherical microphone array (SMA) and conventional beamforming (CBF) or spherical harmonic beamforming (SHB). At low frequencies, the mainlobe width depends on the SMA radius for CBF and on the order of the spherical harmonics expansion for SHB, which is related to the number of microphones. In this letter, Kriging is used to virtually increase the SMA radius and/or the number of microphones. Numerical and experimental investigations show the effectiveness of Kriging to reduce the mainlobe width and thus improve the acoustic images obtained with a SMA and CBF or SHB.
RESUMO
Complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is proposed in order to measure normal incidence sound transmission loss of materials in a modified impedance tube using a three-microphone two-load or one-load method. The modified tube is a standard two-microphone impedance tube, where a third microphone is mounted on a movable hard termination. This method is conceptually identical to the four-microphone two-load or one-load method described in the standard; however, it requires fewer transfer functions and one microphone less. The method is validated on (1) symmetrical homogeneous and (2) non-symmetrical non-homogeneous specimens.
RESUMO
Passive earplugs are used to prevent workers from noise-induced hearing loss. However, earplugs often induce an acoustic discomfort known as the occlusion effect. This phenomenon corresponds to an increased auditory perception of the bone-conducted part of physiological noises at low-frequency and is associated with the augmentation of the acoustic pressure in the occluded earcanal. In this work, we report a new concept of passive earplugs for mitigating the occlusion effect between 100 Hz and 1 kHz. The strategy consists in reducing the input impedance of the earplug seen from the earcanal by using quasi-perfect broadband absorbers derived from the field of meta-materials. The proposed "meta-earplug" is made of 4 critically coupled Helmholtz resonators arranged in parallel. Their geometry is optimized using an evolutionary algorithm associated with a theoretical model of the meta-earplug input impedance. The latter is validated against a finite-element approach and impedance sensor measurements. The meta-earplug is manufactured by 3D printing. Artificial test fixtures are used to assess the occlusion effect and the insertion loss. Results show that the meta-earplug induces an occlusion effect approximately 10 dB lower than foam and silicone earplugs while it provides an insertion loss similar to the silicone earplug up to 5 kHz.
Assuntos
Dispositivos de Proteção das Orelhas , Perda Auditiva Provocada por Ruído , Percepção Auditiva , Perda Auditiva Provocada por Ruído/prevenção & controle , Humanos , Ruído , SiliconesRESUMO
Offering hearing protection devices (HPDs) to workers exposed to hazardous noise is a noise control strategy often used to prevent noise-induced hearing loss (NIHL). However, HPDs are used incorrectly and inconsistently, which explains their limited efficiency. Numerous models based on social cognition theories identify the significant factors associated with inconsistent HPD use and aim to improve HPD training programs and to increase HPD use. However, these models do not detail (dis)comfort aspects originating from complex interactions between characteristics of the triad "environment/person/HPD" while these aspects are known to largely influence HPD (mis)use. This paper proposes a holistic model explaining HPD (mis)use, based on the integration of a comfort model adapted to HPDs into an existing behavioral model already developed for HPDs. The model also takes into account the temporal dimension, which makes it possible to capture the scope of change in HPD-related health behaviors. This holistic description of HPD use could be used as a tool for stakeholders involved in HPD use to effectively prevent NIHL among workers.