Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9303-9313, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752648

RESUMO

As part of the Integrated Atmospheric Deposition Network, precipitation (n = 207) and air (n = 60) from five sites and water samples (n = 87) from all five Great Lakes were collected in 2021-2023 and analyzed for 41 per- and polyfluoroalkyl substances (PFAS). These measurements were combined with other available data to estimate the mass budget for four representative compounds, PFBA, PFBS, PFOS, and PFOA for the basin. The median Σ41PFAS concentrations in precipitation across the five sites ranged between 2.4 and 4.5 ng/L. The median Σ41PFAS concentration in lake water was highest in Lake Ontario (11 ng/L) and lowest in Lake Superior (1.3 ng/L). The median Σ41PFAS concentration in air samples was highest in Cleveland at 410 pg/m3 and lowest at Sleeping Bear Dunes at 146 pg/m3. The net mass transfer flows were generally negative for Lakes Superior, Michigan, and Huron and positive for Lakes Erie and Ontario, indicating that the three most northern lakes are accumulating PFAS and the other two are eliminating PFAS. Atmospheric deposition is an important source of PFAS, particularly for Lake Superior.


Assuntos
Monitoramento Ambiental , Lagos , Lagos/química , Atmosfera/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Great Lakes Region , Poluentes Atmosféricos/análise
2.
Environ Sci Technol ; 57(38): 14396-14406, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695984

RESUMO

Since the phase-out of polybrominated diphenyl ethers (PBDEs), large amounts of alternative halogenated flame retardants (AHFRs) have been introduced to the market. Due to their persistence and toxicity, halogenated flame retardants (HFRs) have become a concern for the ecosystem and human health. However, there remains limited assessment of the atmospheric loadings, sources, and environmental fate of HFRs in Lake Ontario, which receives urban-related inputs and cumulative chemical inputs from the upstream Great Lakes from Canada and the United States. We combined long-term measurements with a modified multimedia model based on site-specific environmental parameters from Lake Ontario to understand the trends and fate of HFRs. All HFRs were detected in the air, precipitation, lake trout, and herring gull egg samples throughout the sampling periods. General decreasing trends were found for PBDEs, while the temporal trends for AHFRs were not clear. Physical-chemical properties and emissions significantly influence the levels, profiles, and trends. Using the probabilistic modeling, HFR concentrations in lake water and sediment were predicted to be close to the measurement, suggesting a good performance for the modified model. The loadings from tributaries and wastewater effluent were the primary input pathways. Transformations in the water and sedimentation were estimated to be the dominant output pathway for the three HFRs.


Assuntos
Retardadores de Chama , Humanos , Ontário , Ecossistema , Éteres Difenil Halogenados , Lagos , Água
3.
Environ Res ; 205: 112557, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919960

RESUMO

Major elements and nutrients are key water quality monitoring targets in the Great Lakes, but large-scale and long-term data for (trace) metals remains comparatively scarce. Consequently, the sources and processes controlling metal loading rates and potential accumulation in the lakes are not as well constrained. Here, we present a comprehensive assessment of select metal loads in the Great Lakes basin, aggregating tributary and connecting channel loads as well as estimates for atmospheric input and sedimentation. In total, 26,845 hydrometric and water quality datapoints from major environmental surveillance programs were compiled into mass-balance calculations and dynamic simulations for 1980-2020. Conservative element (Na, Cl) loads were used to calibrate the black-box approach, and mass-balance for these elements could be achieved at ≥90% and long-term trends accurately reproduced. In contrast, biogeochemically reactive (trace) metals Cu, Ni, Zn and Pb displayed highly variable source-sink behavior across the Great Lakes. Our results show that i) atmospheric inputs, tributary loads, and sedimentation all affect the concentrations and temporal trends of the studied metals but differently in the upper versus lower lakes, ii) smaller tributaries can be disproportionately important to lake-wide metal budgets, and iii) current loading rates may yield increasing lake-wide average Cl concentrations (e.g., up to 2.3 mg/L in Lake Superior) but decreasing metal concentrations (e.g., down to <0.25 µg/L Cu in Lake Ontario) by 2100. This work provides important quantitative baselines for metal loads in the Great Lakes and may help optimize surveillance and management strategies for the preservation of Great Lakes water quality.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Environ Sci Technol ; 55(14): 9518-9526, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33826304

RESUMO

The time trend of α- and γ-hexachlorocyclohexane (HCH) isomers in Lake Superior water was followed from 1986 to 2016, the longest record for any persistent organic pollutant (POP) in Great Lakes water. Dissipation of α-HCH and γ-HCHs was first order, with halving times (t1/2) of 5.7 and 8.5 y, respectively. Loss rates were not significantly different starting a decade later (1996-2016). Concentrations of ß-HCH were followed from 1996-2016 and dissipated more slowly (t1/2 = 16 y). In 1986, the lake contained an estimated 98.8 tonnes of α-HCH and 13.2 tonnes of γ-HCH; by 2016, only 2.7% and 7.9% of 1986 quantities remained. Halving times of both isomers in water were longer than those reported in air, and for γ-HCH, they were longer in water than those reported in lake trout. Microbial degradation was evident by enantioselective depletion of (+)α-HCH, which increased from 1996 to 2011. Volatilization was the main removal process for both isomers, followed by degradation (hydrolytic and microbial) and outflow through the St. Mary's River. Sedimentation was minor. Major uncertainties in quantifying removal processes were in the two-film model for predicting volatilization and in microbial degradation rates. The study highlights the value of long-term monitoring of chemicals in water to interpreting removal processes and trends in biota.


Assuntos
Praguicidas , Poluentes Químicos da Água , Hexaclorocicloexano/análise , Lagos , Praguicidas/análise , Água , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 54(9): 5550-5559, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32271010

RESUMO

The United States and Canada called for a 40% load reduction of total phosphorus from 2008 levels entering the western and central basins of Lake Erie to achieve a 6000 MTA target and help reduce its central basin hypoxia. The Detroit River is a significant source of total phosphorus to Lake Erie; it in turn has been reported to receive up to 58% of its load from Lake Huron when accounting for resuspended sediment loads previously unmonitored at the lake outlet. Key open questions are where does this additional load originate, what drives its variability, and how often does it occur. We used a hydrodynamic model, satellite images of resuspension events and ice cover, wave hindcasts, and continuous turbidity measurements at the outlet of Lake Huron to determine where in Lake Huron the undetected load originates and what drives its variability. We show that the additional sediment load, and likely phosphorus, is from wave-induced Lake Huron sediment resuspension, primarily within 30 km of the southeastern shore. When the flow is from southwest or down the center of the lake, the resuspended sediment is not detected at Canada's sampling station at the head of the St. Clair River.


Assuntos
Lagos , Rios , Canadá , Monitoramento Ambiental , Fósforo
6.
Environ Sci Technol ; 53(15): 8543-8552, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31339294

RESUMO

The concentrations of perfluoroalkyl acids (PFAAs) were determined in precipitation from three locations across the Great Lakes between 2006 and 2018 and compared to those in surface water. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations generally decreased in precipitation, likely in response to phase-outs/regulatory actions. In comparison, concentrations of shorter-chained PFAA, which are not regulated in Canada did not decrease and those of perfluorohexanoate and perfluorobutanoate (PFBA) recently increased, which could be due to their use as replacements, as the longer-chained PFAAs are being phased-out by industry. PFOS and PFOA concentrations were greater in Lake Ontario precipitation than in precipitation from more remote locations. In comparison, PFBA concentrations were comparable across locations, suggesting greater atmospheric transport either through its more volatile precursors and/or directly in association with particles/aerosols. In Lake Ontario, the comparison of PFAAs in precipitation to those in surface water provides evidence of sources (e.g., street dust and wastewater effluent) in addition to wet deposition to surface water, whereas wet deposition appears to be dominant in Lakes Huron and Superior. Our results suggest that source control of shorter-chained PFAAs may be slow to be reflected in environmental concentrations due to emissions far from the location of detection and continued volatilization from existing in-use products and waste streams.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Lagos , Ontário , Água
7.
Arch Environ Contam Toxicol ; 76(2): 231-245, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30361942

RESUMO

Triclosan is widely used in personal care products (skin creams, toothpastes, soaps, deodorants, body spray) and cleaning products (dishwashing detergent and all-purpose cleaners) (Halden in Environ Sci Technol 48:3603-3611, 2014). In 2001, it was selected for screening-level risk assessment under the Canadian Environmental Protection Act (HC and EC in Preliminary assessment. Triclosan. Chemical abstracts Service Number 3380-34-5, 2012. http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=6EF68BEC-1 ), and its physicochemical and toxicological characteristics indicate that there may be a risk to aquatic environments due to releases of the chemical in Canada. A surveillance initiative across Canada has included sampling at 44 sites from July 2012 to March 2018. Triclosan was detected in 226 of 918 samples; concentrations ranged from less than 6 to 874 ng L-1, and the detections averaged 54.23 ng L-1 (standard deviation; 97.6 ng L-1). However, using the entire dataset (including censored data estimated with the Kaplan-Meier model), the mean triclosan concentration was 17.95 ng L-1, and the standard deviation was 52.84 ng L-1. Three samples at Wascana Creek (downstream), Saskatchewan, had concentrations above the Federal Environmental Quality Guidelines of 470 ng L-1, indicating a potential risk to the aquatic ecosystem. In this study, triclosan in samples collected downstream from municipal wastewater treatment plant discharges usually demonstrated higher concentrations than upstream samples. Based on the results of this study, it is hypothesized that triclosan concentration have fluctuated between years of this study but not in an overall or significant increase or decreasing trend. Triclosan concentrations and detections also are more prevalent in urban than in rural or mixed development rivers. Performance evaluation of triclosan concentrations in the Canadian environment is scheduled to be reassessed by 2024. Therefore, a 3-year sampling program should be in place across Canada by 2021.


Assuntos
Água Doce/análise , Triclosan/análise , Poluentes Químicos da Água/análise , Canadá , Monitoramento Ambiental
8.
Environ Sci Technol ; 48(16): 9563-72, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25045802

RESUMO

The Great Lakes have been the focus of extensive environmental research, but recent data on the aquatic concentrations of emerging compounds, such as flame retardants, are scarce. Water samples from 18 stations on the five Great Lakes were collected in 2011 and 2012 using XAD-2 resin adsorption and analyzed for PCBs, organochlorine pesticides, PAHs, polybrominated diphenyl ethers (PBDEs), and emerging flame retardants, including organophosphate flame retardants (OPEs). Total PCB concentrations ranged from 117 ± 18 pg/L in Lake Superior to 623 ± 113 pg/L in Lake Ontario. Among the organochlorine pesticides, the most abundant was dieldrin, with the highest average concentration of 99 ± 26 pg/L in Lake Erie, followed by p,p'-DDD with an average concentration of 37 ± 8 pg/L in Lake Ontario. Total PAH concentrations were higher in Lakes Erie and Ontario than in Lakes Michigan, Huron, and Superior. Total PBDE concentrations were highest in Lake Ontario (227 ± 75 pg/L), and the most abundant congeners were BDE-47, BDE-99, and BDE-209. Total OPE concentrations ranged between 7.3 ± 4.5 ng/L in Lake Huron to 96 ± 43 ng/L in Lake Erie.


Assuntos
Retardadores de Chama/análise , Lagos/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Água Doce/química , Éteres Difenil Halogenados/análise , Lagos/química , Michigan , Ontário , Bifenil Polibromatos/análise , Bifenilos Policlorados/análise , Poliestirenos
9.
Front Microbiol ; 14: 1073753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846788

RESUMO

Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St. Clair-Detroit River-Lake Erie aquatic corridor. We found that the aquatic microbiome was structured along the flow path and influenced mainly by higher nutrient concentrations in the Thames River, and higher temperature and pH downstream in Lake St. Clair and Lake Erie. The same dominant bacterial phyla were detected along the water continuum, changing only in relative abundance. At finer taxonomical level, however, there was a clear shift in the cyanobacterial community, with Planktothrix dominating in the Thames River and Microcystis and Synechococcus in Lake St. Clair and Lake Erie. Mantel correlations highlighted the importance of geographic distance in shaping the microbial community structure. The fact that a high proportion of microbial sequences found in the Western Basin of Lake Erie were also identified in the Thames River, indicated a high degree of connectivity and dispersal within the system, where mass effect induced by passive transport play an important role in microbial community assembly. Nevertheless, some cyanobacterial amplicon sequence variants (ASVs) related to Microcystis, representing less than 0.1% of relative abundance in the upstream Thames River, became dominant in Lake St. Clair and Erie, suggesting selection of those ASVs based on the lake conditions. Their extremely low relative abundances in the Thames suggest additional sources are likely to contribute to the rapid development of summer and fall blooms in the Western Basin of Lake Erie. Collectively, these results, which can be applied to other watersheds, improve our understanding of the factors influencing aquatic microbial community assembly and provide new perspectives on how to better understand the occurrence of cHABs in Lake Erie and elsewhere.

10.
Environ Pollut ; 285: 117442, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380209

RESUMO

Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise
11.
Sci Total Environ ; 755(Pt 2): 142472, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059142

RESUMO

Bisphenol A (BPA) is an industrial chemical that has been identified by some jurisdictions as an environmental concern. In 2010, Canada concluded that this substance posed a risk to the environment and human health, and implemented actions to reduce its concentrations in the environment. To support these activities, a multimedia analysis of BPA in the Canadian environment was conducted to evaluate spatial and temporal trends, and to infer mechanisms influencing the patterns. BPA was consistently detected in wastewater and biosolids across Canadian wastewater treatment plants (WWTPs) and in landfill leachate. In addition, BPA concentrations were significantly higher in surface water downstream compared to upstream of WWTPs in three of five urban areas evaluated. However, application of biosolids to Canadian agricultural fields did not contribute to elevated BPA concentrations in soil, earthworms, and European Starling (Sturnus vulgaris) plasma one and two years post-treatment. Spatial trends of BPA concentrations in surface water and sediment are influenced by human activity, with higher concentrations typically found downstream of industrial sources and WWTPs in urban areas. BPA was detected in bird plasma at locations impacted by WWTPs and landfills. However, spatial trends in birds were less clear and may have been confounded by metabolic biotransformation. In terms of temporal trends, BPA concentrations in surface water decreased significantly at 10 of 16 monitoring sites evaluated between 2008 and 2018. In contrast, recent temporal trends of BPA in six sediment cores were variable, which may be a result of biotransformation of the flame retardant tetrabromobisphenol A to BPA. Overall, our study provides evidence that Government of Canada actions have been generally successful in reducing BPA concentrations in the Canadian environment. Our results indicate that long-term monitoring programs using surface water are more effective than other media for tracking and understanding future environmental trends of BPA.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/análise , Canadá , Humanos , Multimídia , Fenóis , Poluentes Químicos da Água/análise
13.
Environ Sci Technol ; 44(12): 4678-84, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20504016

RESUMO

Concentrations of atrazine and metolachlor and stereoisomer fractions (SF = herbicidally active/total stereoisomers) of metolachlor were determined in 101 surface water samples collected from the five Laurentian Great Lakes in 2005-2006. Geometric mean (GM) concentrations of atrazine ranged from 5.5 to 61 ng L(-1), decreasing from lakes Ontario approximately Michigan approximately Erie > Huron > Superior, while metolachlor concentrations ranged from 0.28 to 14 ng L(-1) and showed similar trends among the lakes. Median SFs ranged from 0.527 (Superior) to 0.844 (Erie) with an overall value of 0.708, and were significantly different among the Great Lakes (p < 0.05), except for Michigan vs Huron and Michigan vs Ontario. The SF in Erie was closest to that of the dominant product in use, S-metolachlor (SF = 0.880), while Superior showed an SF similar to that of racemic metolachlor (SF = 0.500). The median SFs in lakes Ontario, Huron and Erie were significantly lower than the median SF in Ontario stream samples collected in 2006-2007. The lower SFs in lakes suggest in-lake stereoselective processing of metolachlor or hold-up of older racemic metolachlor residues.


Assuntos
Acetamidas/análise , Atrazina/análise , Monitoramento Ambiental , Água Doce/química , Acetamidas/química , Atrazina/química , Geografia , Great Lakes Region , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA