Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
2.
Pharmacol Rev ; 69(2): 93-139, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28255005

RESUMO

Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.


Assuntos
Adenilil Ciclases/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/química , Animais , Humanos , Conformação Proteica , Transdução de Sinais , Terminologia como Assunto
4.
Handb Exp Pharmacol ; 238: 49-66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27900607

RESUMO

Mammalian membranous and soluble adenylyl cyclases (mAC, sAC) and soluble guanylyl cyclases (sGC) generate cAMP and cGMP from ATP and GTP, respectively, as substrates. mACs (nine human isoenzymes), sAC, and sGC differ in their overall structures owing to specific membrane-spanning and regulatory domains but consist of two similarly folded catalytic domains C1 and C2 with high structure-based homology between the cyclase species. Comparison of available crystal structures - VC1:IIC2 (a construct of domains C1a from dog mAC5 and C2a from rat mAC2), human sAC and sGC, mostly in complex with substrates, substrate analogs, inhibitors, metal ions, and/or modulators - reveals that especially the nucleotide binding sites are closely related. An evolutionarily well-conserved catalytic mechanism is based on common binding modes, interactions, and structural transformations, including the participation of two metal ions in catalysis. Nucleobase selectivity relies on only few mutations. Since in all cases the nucleoside moiety is embedded in a relatively spacious cavity, mACs, sAC, and sGC are rather promiscuous and bind nearly all purine and pyrimidine nucleotides, including CTP and UTP, and many of their derivatives as inhibitors with often high affinity. By contrast, substrate specificity of mammalian adenylyl and guanylyl cyclases is high due to selective dynamic rearrangements during turnover.


Assuntos
Adenilil Ciclases/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Adenilil Ciclases/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sistemas do Segundo Mensageiro , Guanilil Ciclase Solúvel/química , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Mol Pharmacol ; 85(4): 598-607, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470063

RESUMO

Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolved so far. An important step toward this goal is the identification of high-affinity ligands that stabilize an sGC conformation resembling the active, "fully closed" state. Therefore, we examined inhibition of rat sGCα1ß1 by 38 purine- and pyrimidine-nucleotides with 2,4,6,-trinitrophenyl and (N-methyl)anthraniloyl substitutions at the ribosyl moiety and compared the data with that for the structurally related membranous adenylyl cyclases (mACs) 1, 2, 5 and the purified mAC catalytic subunits VC1:IIC2. TNP-GTP [2',3'-O-(2,4,6-trinitrophenyl)-GTP] was the most potent sGCα1ß1 inhibitor (Ki, 10.7 nM), followed by 2'-MANT-3'-dATP [2'-O-(N-methylanthraniloyl)-3'-deoxy-ATP] (Ki, 16.7 nM). Docking studies on an sGCαcat/sGCßcat model derived from the inactive heterodimeric crystal structure of the catalytic domains point to similar interactions of (M)ANT- and TNP-nucleotides with sGCα1ß1 and mAC VC1:IIC2. Reasonable binding modes of 2'-MANT-3'-dATP and bis-(M)ANT-nucleotides at sGC α1ß1 require a 3'-endo ribosyl conformation (versus 3'-exo in 3'-MANT-2'-dATP). Overall, inhibitory potencies of nucleotides at sGCα1ß1 versus mACs 1, 2, 5 correlated poorly. Collectively, we identified highly potent sGCα1ß1 inhibitors that may be useful for future crystallographic and fluorescence spectroscopy studies. Moreover, it may become possible to develop mAC inhibitors with selectivity relative to sGC.


Assuntos
Guanilato Ciclase/antagonistas & inibidores , Nitrocompostos/química , Nucleotídeos de Purina/química , Nucleotídeos de Pirimidina/química , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , ortoaminobenzoatos/química , Inibidores de Adenilil Ciclases , Adenilil Ciclases/química , Animais , Guanilato Ciclase/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Ratos , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes/química , Guanilil Ciclase Solúvel , Relação Estrutura-Atividade
6.
Mol Pharmacol ; 79(4): 631-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266488

RESUMO

The histamine H(4) receptor (H(4)R) is expressed in several cell types of the immune system and is assumed to play an important pro-inflammatory role in various diseases, including bronchial asthma, atopic dermatitis, and pruritus. Accordingly, H(4)R antagonists have been suggested to provide valuable drugs for the treatment of these diseases. Over the past decade, the indole derivative 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ7777120) has become the "standard" H(4)R antagonist and has been extensively used to assess the pathophysiological role of the H(4)R. However, the situation has now become more complicated by recent data (p. 749 and Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/s00210-011-0612-3) showing that JNJ7777120 can also activate ß-arrestin in a supposedly G(i)-protein-independent (pertussis toxin-insensitive) manner and that at certain H(4)R species orthologs, JNJ7777120 exhibits partial agonist efficacy with respect to G(i)-protein activation (steady-state high-affinity GTPase activity). These novel findings can be explained within the concept of functional selectivity or biased signaling, assuming unique ligand-specific receptor conformations with distinct signal transduction capabilities. Thus, great caution must be exerted when interpreting in vivo effects of JNJ7777120 as H(4)R antagonism. We discuss future directions to get out of the current dilemma in which there is no "standard" H(4)R antagonist available to the scientific community.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Indóis/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Animais , Arrestinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , beta-Arrestinas
7.
J Pharmacol Exp Ther ; 336(1): 104-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962032

RESUMO

Whooping cough is caused by Bordetella pertussis and still constitutes one of the top five causes of death in young children, particularly in developing countries. The calmodulin-activated adenylyl cyclase (AC) toxin CyaA substantially contributes to disease development. Thus, potent and selective CyaA inhibitors would be valuable drugs for the treatment of whooping cough. However, it has been difficult to obtain potent CyaA inhibitors with selectivity relative to mammalian ACs. Selectivity is important for reducing potential toxic effects. In a previous study we serendipitously found that bis-methylanthraniloyl (bis-MANT)-IMP is a more potent CyaA inhibitor than MANT-IMP (Mol Pharmacol 72:526-535, 2007). These data prompted us to study the effects of a series of 32 bulky mono- and bis-anthraniloyl (ANT)-substituted nucleotides on CyaA and mammalian ACs. The novel nucleotides differentially inhibited CyaA and ACs 1, 2, and 5. Bis-ANT nucleotides inhibited CyaA competitively. Most strikingly, bis-Cl-ANT-ATP inhibited CyaA with a potency ≥100-fold higher than ACs 1, 2, and 5. In contrast to MANT-ATP, bis-MANT-ATP exhibited low intrinsic fluorescence, thereby substantially enhancing the signal-to noise ratio for the analysis of nucleotide binding to CyaA. The high sensitivity of the fluorescence assay revealed that bis-MANT-ATP binds to CyaA already in the absence of calmodulin. Molecular modeling showed that the catalytic site of CyaA is sufficiently spacious to accommodate both MANT substituents. Collectively, we have identified the first potent CyaA inhibitor with high selectivity relative to mammalian ACs. The fluorescence properties of bis-ANT nucleotides facilitate development of a high-throughput screening assay.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Inibidores de Adenilil Ciclases , Bordetella pertussis/enzimologia , Toxina Pertussis/antagonistas & inibidores , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Adenilil Ciclases/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Linhagem Celular , Halogênios/química , Halogênios/farmacologia , Toxina Pertussis/metabolismo , Spodoptera , Relação Estrutura-Atividade
8.
J Comput Aided Mol Des ; 25(1): 51-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21088982

RESUMO

A series of 51 5-HT(2A) partial agonistic arylethylamines (primary or benzylamines) from different structural classes (indoles, methoxybenzenes, quinazolinediones) was investigated by fragment regression analysis (FRA), docking and 3D-QSAR approaches. The data, pEC(50) values and intrinsic activities (E(max)) on rat arteries, show high variability of pEC(50) from 4 to 10 and of E(max) from 15 to 70%. FRA indicates which substructures affect potency or intrinsic activity. The high contribution of halogens in para position of phenethylamines to pEC(50) points to a specific hydrophobic pocket. Other results suggest the significance of hydrogen bonds of the aryl moiety for activation and the contrary effect of benzyl groups on affinity (increasing) and intrinsic activity (decreasing). Results from fragment regression and data on all available mutants were considered to derive a common binding site at the rat 5-HT(2A) receptor. After generation and MD simulations of a receptor model based on the ß(2)-adrenoceptor structure, typical derivatives were docked, leading to the suggestion of common interactions, e.g., with serines in TM3 and TM5 and with a cluster of aromatic amino acids in TM5 and TM6. The whole series was aligned by docking and minimization of the complexes. The pEC(50) values correlate well with Sybyl docking energies and hydrophobicity of the aryl moieties. With this alignment, CoMFA and CoMSIA approaches based on a training set of 36 and a test set of 15 compounds were performed. The correlation of pEC(50) with steric, electrostatic, hydrophobic and H-bond acceptor fields resulted in sufficient fit (q (2): 0.75-0.8, r (2): 0.92-0.95) and predictive power (r (pred) (2) : 0.85-0.88). The important interaction regions largely reflect the patterns provided by the putative binding site. In particular, the fit of the aryl moieties and benzyl substituents to two hydrophobic pockets is evident.


Assuntos
Etilaminas/química , Etilaminas/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Modelos Biológicos , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Ratos
9.
FEBS J ; 288(13): 4000-4023, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33403747

RESUMO

Chromatin remodelers use the energy of ATP hydrolysis to regulate chromatin dynamics. Their impact for development and disease requires strict enzymatic control. Here, we address the differential regulability of the ATPase domain of hSNF2H and hCHD3, exhibiting similar substrate affinities and enzymatic activities. Both enzymes are comparably strongly inhibited in their ATP hydrolysis activity by the competitive ATPase inhibitor ADP. However, the nucleosome remodeling activity of SNF2H is more strongly affected than that of CHD3. Beside ADP, also IP6 inhibits the nucleosome translocation of both enzymes to varying degrees, following a competitive inhibition mode at CHD3, but not at SNF2H. Our observations are further substantiated by mutating conserved Q- and K-residues of ATPase domain motifs. The variants still bind both substrates and exhibit a wild-type similar, basal ATP hydrolysis. Apart from three CHD3 variants, none of the variants can translocate nucleosomes, suggesting for the first time that the basal ATPase activity of CHD3 is sufficient for nucleosome remodeling. Together with the ADP data, our results propose a more efficient coupling of ATP hydrolysis and remodeling in CHD3. This aspect correlates with findings that CHD3 nucleosome translocation is visible at much lower ATP concentrations than SNF2H. We propose sequence differences between the ATPase domains of both enzymes as an explanation for the functional differences and suggest that aa interactions, including the conserved Q- and K-residues distinctly regulate ATPase-dependent functions of both proteins. Our data emphasize the benefits of remodeler ATPase domains for selective drugability and/or regulability of chromatin dynamics.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Ligação Competitiva , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Helicases/química , DNA Helicases/genética , Humanos , Hidrólise , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Biochemistry ; 49(26): 5494-503, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20521845

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers for numerous mammalian cell functions. The natural occurrence and synthesis of a third cyclic nucleotide (cNMP), cyclic cytidine 3',5'-monophosphate (cCMP), is a matter of controversy, and almost nothing is known about cyclic uridine 3',5'-monophosphate (cUMP). Bacillus anthracis and Bordetella pertussis secrete the adenylyl cyclase (AC) toxins edema factor (EF) and CyaA, respectively, weakening immune responses and facilitating bacterial proliferation. A cell-permeable cCMP analogue inhibits human neutrophil superoxide production. Here, we report that EF and CyaA also possess cytidylyl cyclase (CC) and uridylyl cyclase (UC) activity. CC and UC activity was determined by a radiometric assay, using [alpha-(32)P]CTP and [alpha-(32)P]UTP as substrates, respectively, and by a high-performance liquid chromatography method. The identity of cNMPs was confirmed by mass spectrometry. On the basis of available crystal structures, we developed a model illustrating conversion of CTP to cCMP by bacterial toxins. In conclusion, we have shown both EF and CyaA have a rather broad substrate specificity and exhibit cytidylyl and uridylyl cyclase activity. Both cCMP and cUMP may contribute to toxin actions.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , AMP Cíclico/metabolismo , Humanos , Imunidade , Nucleotídeos Cíclicos/metabolismo , Especificidade por Substrato , Uridina Monofosfato/metabolismo
11.
J Pharmacol Exp Ther ; 333(2): 382-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20106995

RESUMO

It is assumed that many G protein-coupled receptors (GPCRs) are restrained in an inactive state by the "ionic lock," an interaction between an arginine in transmembrane domain (TM) 3 (R3.50) and a negatively charged residue in TM6 (D/E6.30). In the human histamine H4 receptor (hH4R), alanine is present in position 6.30. To elucidate whether this mutation causes the high constitutive activity of hH4R, we aimed to reconstitute the ionic lock by constructing the A6.30E mutant. The role of R3.50 was investigated by generating hH4R-R3.50A. Both mutants were expressed alone or together with Galpha(i2) and Gbeta1gamma2 in Sf9 cells and characterized in GTPase, 35S-labeled guanosine 5'-[gamma-thio]triphosphate binding, and high-affinity agonist binding assays. Unexpectedly, compared with hH4R, hH4R-A6.30E showed only nonsignificant reduction of constitutive activity and G protein-coupling efficiency. The KD of [3H]histamine was unaltered. By contrast, hH4R-R3.50A did not stimulate G proteins. Thioperamide affinity at hH(4)R-R3.50A was increased by 300 to 400%, whereas histamine affinity was reduced by approximately 50%. A model of the active hH4R state in complex with the Galpha(i2) C terminus was compared with the crystal structures of turkey beta1 and human beta2 adrenoceptors. We conclude that 1) constitutive activity of hH4R is facilitated by the salt bridge D5.69-R6.31 rather than by the missing ionic lock, 2) Y3.60 may form alternative locks in active and inactive GPCR states, 3) R3.50 is crucial for hH4R-G protein coupling, and 4) hH4R-R3.50A represents an inactive state with increased inverse agonist and reduced agonist affinity. Thus, the ionic lock, although stabilizing the inactive rhodopsin state, is not generally important for all class A GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , DNA Complementar/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Immunoblotting , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos/fisiologia , Receptores Histamínicos H4 , Alinhamento de Sequência
12.
Bioorg Med Chem Lett ; 20(24): 7191-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21044842

RESUMO

Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity. In addition, the investigation of numerous H(4)R agonists in animal models is hampered by species-dependent discrepancies regarding potencies and histamine receptor selectivities of the available compounds, especially when comparing human and rodent receptors. This article gives an overview about structures, potencies, and selectivities of various compounds showing H(4)R agonistic activity and summarizes the structure-activity relationships of selected compound classes.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Animais , Benzimidazóis/química , Sítios de Ligação , Clozapina/química , Guanidinas/química , Humanos , Ligantes , Camundongos , Oximas/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 20(10): 3173-6, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20409707

RESUMO

A set of chiral imidazolylpropylguanidines and 2-aminothiazolylpropylguanidines bearing N(G)-3-phenyl- or N(G)-3-cyclohexylbutanoyl residues was synthesized and investigated for histamine H(2) receptor (H(2)R) agonism (guinea pig (gp) right atrium, GTPase assay on recombinant gp and human (h)H(2)R) and for hH(2)R selectivity compared to hH(1)R, hH(3)R and hH(4)R. In contrast to previous studies on arpromidine derivatives, the present investigation of acylguanidine-type compounds revealed only very low eudismic ratios (1.1-3.2), indicating the stereochemistry of the acyl moiety to play only a minor role in this series of H(2)R agonists.


Assuntos
Agonistas dos Receptores Histamínicos/química , Receptores Histamínicos H2/química , Animais , Guanidinas/síntese química , Guanidinas/química , Guanidinas/farmacologia , Cobaias , Agonistas dos Receptores Histamínicos/síntese química , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
14.
Eur J Med Chem ; 193: 112232, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199135

RESUMO

Mutants of the FLT3 receptor tyrosine kinase (RTK) with duplications in the juxtamembrane domain (FLT3-ITD) act as drivers of acute myeloid leukemia (AML). Potent tyrosine kinase inhibitors (TKi) of FLT3-ITD entered clinical trials and showed a promising, but transient success due to the occurrence of secondary drug-resistant AML clones. A further caveat of drugs targeting FLT3-ITD is the co-targeting of other RTKs which are required for normal hematopoiesis. This is observed quite frequently. Therefore, novel drugs are necessary to treat AML effectively and safely. Recently bis(1H-indol-2-yl)methanones were found to inhibit FLT3 and PDGFR kinases. In order to optimize these agents we synthesized novel derivatives of these methanones with various substituents. Methanone 16 and its carbamate derivative 17b inhibit FLT3-ITD at least as potently as the TKi AC220 (quizartinib). Models indicate corresponding interactions of 16 and quizartinib with FLT3. The activity of 16 is accompanied by a high selectivity for FLT3-ITD.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Tirosina Quinase 3 Semelhante a fms/metabolismo
15.
Mol Pharmacol ; 75(1): 13-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19001067

RESUMO

It is now well established that any given ligand for a G-protein-couple receptor (GPCR) does not simply possess a single defined efficacy. Rather, a ligand possesses multiple efficacies, depending on the specific down-stream signal transduction pathway analyzed. This diversity may be based on ligand-specific GPCR conformations and is often referred to as "functional selectivity." It has been known for a century that stereoisomers of catecholamines differ in their potency and, in some systems, also in their efficacy. However, the molecular basis for efficacy differences of GPCR ligand stereoisomers has remained poorly defined. In an elegant study published in this issue of Molecular Pharmacology, Woo et al. (p. 158) show that stereoisomers of the beta(2)-adrenoceptor selective agonist fenoterol differentially activates G(s)- and G(i)-proteins in native rat cardiomyocytes. This study is so important because it is the first report to show that even the subtle structural differences within a ligand stereoisomer pair are sufficient to discriminate between GPCR conformations with distinct G-protein coupling properties. The study highlights of how important it is to examine the "more active" (eutomer) and the "less active" (distomer) stereoisomer to understand the mechanisms of action and the cellular effects of GPCR ligands. The study by Woo et al. will ignite a renaissance of the analysis of ligand stereoisomers, using sensitive pharmacological and biophysical assays. The available literature supports the notion that meticulous analysis of ligand stereoisomers is a goldmine for understanding mechanisms of GPCR activation, analysis of signal transduction pathways, development of new therapies for important diseases, and drug safety.


Assuntos
Conformação Molecular/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Sítios de Ligação , Epinefrina/metabolismo , Fenoterol/farmacologia , Humanos , Ligantes , Modelos Moleculares , Norepinefrina/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais , Estereoisomerismo
16.
Mol Pharmacol ; 75(3): 693-703, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19056899

RESUMO

Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins: lethal factor, protective antigen, and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). However, conventional antibiotic treatment is ineffective against either toxemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Previous studies from our laboratory showed that mammalian membranous AC (mAC) exhibits broad specificity for purine and pyrimidine nucleotides ( Mol Pharmacol 70: 878-886, 2006 ). Here, we investigated structural requirements for EF inhibition by natural purine and pyrimidine nucleotides and nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl groups at the 2'(3')-O-ribosyl position. MANT-CTP was the most potent EF inhibitor (K(i), 100 nM) among 16 compounds studied. MANT-nucleotides inhibited EF competitively. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to MANT-ATP, but FRET to MANT-CTP was only small. Mutagenesis studies revealed that Phe586 is crucial for FRET to MANT-ATP and MANT-CTP and that the mutations N583Q, K353A, and K353R differentially alter the inhibitory potencies of MANT-ATP and MANT-CTP. Docking approaches relying on crystal structures of EF indicate similar binding modes of the MANT nucleotides with subtle differences in the region of the nucleobases. In conclusion, like mAC, EF accommodates both purine and pyrimidine nucleotides. The unique preference of EF for the base cytosine offers an excellent starting point for the development of potent and selective EF inhibitors.


Assuntos
Adenilil Ciclases/metabolismo , Vacinas contra Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Nucleotídeos de Purina/metabolismo , Nucleotídeos de Pirimidina/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenilil Ciclases/química , Adenilil Imidodifosfato/análogos & derivados , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Animais , Vacinas contra Antraz/química , Vacinas contra Antraz/genética , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Catálise , Bovinos , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Nucleotídeos de Purina/química , Nucleotídeos de Pirimidina/química , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 392(2): 199-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30443663

RESUMO

The non-canonical cyclic nucleotide cUMP and the phosphodiesterase PDE9A both occur in neuronal cells. Using HPLC-coupled tandem mass spectrometry, we characterized the kinetics of PDE9A-mediated cUMP hydrolysis. PDE9A is a low-affinity and high-velocity enzyme for cUMP (Vmax = ~ 6 µmol/min/mg; Km = ~ 401 µM). The PDE9 inhibitor BAY 73-6691 inhibited PDE9A-catalyzed cUMP hydrolysis (Ki = 590 nM). Docking studies indicate two H-bonds between the cUMP uridine moiety and Gln453/Asn405 of PDE9A. By contrast, the guanosine moiety of cGMP forms three H-bonds with Gln453. cCMP is not hydrolyzed at a concentration of 3 µM, but inhibits the PDE9A-catalyzed cUMP hydrolysis at concentrations of 100 µM or more. The probable main reason is that the cytosine moiety cannot act as H-bond acceptor for Gln453. A comparison of PDE9A with PDE7A suggests that the preference of the former for cGMP and cUMP and of the latter for cAMP and cCMP is due to stabilized alternative conformations of the side chain amide of Gln453 and Gln413, respectively. This so-called glutamine switch is known to be involved in the regulation of cAMP/cGMP selectivity of some PDEs.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/genética , Humanos , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes/metabolismo
18.
Naunyn Schmiedebergs Arch Pharmacol ; 391(9): 891-905, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29808231

RESUMO

Previous results indicate that the phosphodiesterase PDE3B hydrolyzes cUMP. Also, almost 50 years ago, cUMP-hydrolytic activity was observed in rat adipose tissue. We intended to characterize the enzyme kinetics of PDE3B-mediated cUMP hydrolysis, to determine the PDE3B binding mode of cUMP, and to analyze cUMP hydrolysis in adipocyte preparations. Educts (cNMPs) and products (NMPs) of the PDE reactions as well as intracellular cNMPs were quantitated by HPLC-coupled tandem mass spectrometry. PDE3B expression was determined by qPCR and Western blot. Docking studies were performed with the PDE3B crystal structure PDB ID 1SO2 (complex with a dihydropyridazine inhibitor). PDE3B hydrolyzed cUMP (Km ~ 550 µM, Vmax ~ 76 µmol/min/mg) and cAMP (Km ~ 0.7 µM, Vmax ~ 4.3 µmol/min/mg) in a milrinone (PDE3-selective inhibitor)-sensitive manner (Ki for inhibition of cUMP hydrolysis: 205 nM). cUMP forms one hydrogen bond with PDE3B (uracil 3-NH with side chain oxygen of Q988). Two hydrogen bonds stabilize cAMP binding. cCMP does not interact with PDE3B. Possibly, the cytosine base cannot form hydrogen bonds with PDE3B, and the 4-NH2 group clashes with L987 of the enzyme. Adipocyte differentiation of 3T3-L1 MBX cells increased mRNA of PDE3B, but not of PDE3A. Significant amounts of cUMP were detected in differentiated and undifferentiated 3T3-L1 MBX cells. 3T3-L1 MBX adipocyte lysates and rat epididymal adipose tissue membranes contained milrinone-sensitive cUMP-hydrolytic activity. PDE3B is a low-affinity and high-velocity phosphodiesterase for cUMP. The cUMP-hydrolyzing activity described almost 50 years ago for rat adipose tissue is caused by PDE3, probably by the isoform PDE3B.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/farmacologia , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Células 3T3-L1 , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Hidrólise/efeitos dos fármacos , Masculino , Camundongos , Modelos Moleculares , Ratos , Proteínas Recombinantes/farmacologia
19.
Eur J Med Chem ; 152: 329-357, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29738953

RESUMO

Various diseases are related to epigenetic modifications. Histone deacetylases (HDACs) and histone acetyl transferases (HATs) determine the pattern of histone acetylation, and thus are involved in the regulation of gene expression. First generation histone deacetylase inhibitors (HDACi) are unselective, hinder all different kinds of zinc dependent HDACs and additionally cause several side effects. Subsequently, selective HDACi are gaining more and more interest. Especially, selective histone deacetylase 6 inhibitors (HDAC6i) are supposed to be less toxic. Here we present a successful optimization study of tubastatin A, the synthesis and biological evaluation of new inhibitors based on hydroxamic acids linked to various tetrahydro-ß-carboline derivatives. The potency of our selective HDAC6 inhibitors, exhibiting IC50 values in a range of 1-10 nM towards HDAC6, was evaluated with the help of a recombinant human HDAC6 enzyme assay. Selectivity was proofed in cellular assays by the hyperacetylation of surrogate parameter α-tubulin in the absence of acetylated histone H3 analyzed by Western Blot. We show that all synthesized compounds, with varies modifications of the rigid cap group, were selective and potent HDAC6 inhibitors.


Assuntos
Carbolinas/farmacologia , Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carbolinas/síntese química , Carbolinas/química , Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
J Med Chem ; 61(8): 3454-3477, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29589441

RESUMO

Epigenetic modifiers of the histone deacetylase (HDAC) family contribute to autoimmunity, cancer, HIV infection, inflammation, and neurodegeneration. Hence, histone deacetylase inhibitors (HDACi), which alter protein acetylation, gene expression patterns, and cell fate decisions, represent promising new drugs for the therapy of these diseases. Whereas pan-HDACi inhibit all 11 Zn2+-dependent histone deacetylases (HDACs) and cause a broad spectrum of side effects, specific inhibitors of histone deacetylase 6 (HDAC6i) are supposed to have less side effects. We present the synthesis and biological evaluation of Marbostats, novel HDAC6i that contain the hydroxamic acid moiety linked to tetrahydro-ß-carboline derivatives. Our lead compound Marbostat-100 is a more potent and more selective HDAC6i than previously established well-characterized compounds in vitro as well as in cells. Moreover, Marbostat-100 is well tolerated by mice and effective against collagen type II induced arthritis. Thus, Marbostat-100 represents a most selective known HDAC6i and the possibility for clinical evaluation of a HDAC isoform-specific drug.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Benzamidas/uso terapêutico , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Antirreumáticos/síntese química , Antirreumáticos/farmacologia , Antirreumáticos/toxicidade , Artrite Experimental/induzido quimicamente , Artrite Reumatoide/induzido quimicamente , Benzamidas/líquido cefalorraquidiano , Benzamidas/farmacologia , Benzamidas/toxicidade , Sítios de Ligação , Carbolinas/síntese química , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Carbolinas/toxicidade , Linhagem Celular Tumoral , Colágeno Tipo II , Células HEK293 , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/toxicidade , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/toxicidade , Masculino , Camundongos Endogâmicos DBA , Simulação de Acoplamento Molecular , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA