Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Crit Care ; 36: 8-12, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27546740

RESUMO

PURPOSE: Hypoxia is one of the leading causes of anesthesia-related injury. In response to the limitations of conventional preoxygenation, Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) has been used as a method of providing both preoxygenation and apneic oxygenation during intubation. MATERIALS AND METHODS: In this prospective, observational study, THRIVE was introduced in a critical care unit (CCU), operating room (OR), and emergency department (ED) during emergency intubation of patients at high risk of hypoxia. Linear regression analysis tested for correlation between apnea time or body mass index and hemoglobin saturation (Spo2). RESULTS: Across 71 sequential patients, the interquartile range for apnea time and decrease in Spo2 were 60 to 125 seconds and 0% to 3%, respectively. Significant desaturation occurred in 5 (7%) patients. There was no evidence of correlation between apnea time or body mass index and Spo2 (R2=0.04 and 0.08 for CCU/ED and OR and 0.01 and 0.04 CCU/ED and OR, respectively). There were no complications reported from using THRIVE. CONCLUSIONS: This study demonstrated that preoxygenation and apneic oxygenation using THRIVE were associated with a low incidence of desaturation during emergency intubation of patients at high risk of hypoxia in the CCU, OR, and ED. THRIVE has the potential to minimize the risk of hypoxia in these patient groups.


Assuntos
Apneia/terapia , Intubação Intratraqueal , Oxigenoterapia , Respiração Artificial , Adulto , Idoso , Cuidados Críticos , Emergências , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
2.
Elife ; 42015 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-26506064

RESUMO

Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCß) as a critical mediator of this pathway and demonstrate that the PKCß inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCß and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.


Assuntos
Bloqueadores dos Canais de Cálcio/efeitos adversos , Síndrome de Marfan/tratamento farmacológico , Síndrome de Marfan/patologia , Adulto , Animais , Anti-Hipertensivos/administração & dosagem , Bloqueadores dos Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Humanos , Hidralazina/administração & dosagem , Indóis/administração & dosagem , Estudos Longitudinais , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Proteína Quinase C beta/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Análise de Sobrevida , Resultado do Tratamento
3.
Eur J Hum Genet ; 23(2): 224-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24736733

RESUMO

Shprintzen-Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys-Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFß activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)). This implicates that the initial molecular testing could be focused on mutation analysis of the first half of exon 1 of SKI. As the majority of the known mutations are located in the R-SMAD binding domain of SKI, our study further emphasizes the importance of TGFß signaling in the pathogenesis of SGS.


Assuntos
Aracnodactilia/genética , Craniossinostoses/genética , Proteínas de Ligação a DNA/genética , Síndrome de Marfan/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , Adolescente , Adulto , Aracnodactilia/diagnóstico , Sítios de Ligação , Criança , Pré-Escolar , Craniossinostoses/diagnóstico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Éxons , Feminino , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Smad/metabolismo
4.
J Am Coll Cardiol ; 65(13): 1324-1336, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25835445

RESUMO

BACKGROUND: Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-ß signaling. OBJECTIVES: This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. METHODS: We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. RESULTS: Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-ß signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-ß signaling in association with up-regulation of the expression of TGF-ß ligands. CONCLUSIONS: Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.


Assuntos
Aneurisma Aórtico/genética , Dissecção Aórtica/genética , Mutação , Fator de Crescimento Transformador beta3/genética , Adulto , Idoso , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA
5.
Nat Genet ; 44(11): 1249-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023332

RESUMO

Elevated transforming growth factor (TGF)-ß signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-ß signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-ß in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-ß activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-ß signaling cascades and higher expression of TGF-ß-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-ß signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Assuntos
Aneurisma Aórtico/genética , Aracnodactilia/genética , Craniossinostoses/genética , Proteínas de Ligação a DNA , Síndrome de Marfan/genética , Proteínas Proto-Oncogênicas , Fator de Crescimento Transformador beta , Animais , Aracnodactilia/metabolismo , Células Cultivadas , Craniossinostoses/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos , Humanos , Síndrome de Loeys-Dietz/genética , Síndrome de Marfan/metabolismo , Camundongos , Mutação , Fenótipo , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA