Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 91(4): 716-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330313

RESUMO

Microbes have evolved sophisticated mechanisms of motility allowing them to respond to changing environmental conditions. While this cellular process is well characterized in bacteria, the mode and mechanisms of motility are poorly understood in archaea. This study examines the motility of individual cells of the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Specifically, we investigated motility of cells producing exclusively the archaeal swimming organelle, the archaellum. Archaella are structurally and in sequence similar to bacterial type IV pili involved in surface motility via pilus extension-retraction cycles and not to rotating bacterial flagella. Unexpectedly, our studies reveal a novel type of behaviour for type IV pilus like structures: archaella rotate and their rotation drives swimming motility. Moreover, we demonstrate that temperature has a direct effect on rotation velocity explaining temperature-dependent swimming velocity.


Assuntos
Extensões da Superfície Celular/fisiologia , Sulfolobus acidocaldarius/fisiologia , Extensões da Superfície Celular/efeitos da radiação , Locomoção/efeitos da radiação , Substâncias Macromoleculares/metabolismo , Sulfolobus acidocaldarius/efeitos da radiação , Temperatura
2.
Nucleic Acids Res ; 41(1): 196-205, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23155062

RESUMO

Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein-DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteínas Arqueais/análise , Proteínas Arqueais/química , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/química , DNA/ultraestrutura , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Sulfolobus solfataricus
3.
Biochemistry ; 53(41): 6430-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25291500

RESUMO

The helical structure of double-stranded DNA is destabilized by increasing temperature. Above a critical temperature (the melting temperature), the two strands in duplex DNA become fully separated. Below this temperature, the structural effects are localized. Using tethered particle motion in a temperature-controlled sample chamber, we systematically investigated the effect of increasing temperature on DNA structure and the interplay between this effect and protein binding. Our measurements revealed that (1) increasing temperature enhances DNA flexibility, effectively leading to more compact folding of the double-stranded DNA chain, and (2) temperature differentially affects different types of DNA-bending chromatin proteins from mesophilic and thermophilic organisms. Thus, our findings aid in understanding genome organization in organisms thriving at moderate as well as extreme temperatures. Moreover, our results underscore the importance of carefully controlling and measuring temperature in single-molecule DNA (micromanipulation) experiments.


Assuntos
Proteínas Arqueais/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA Arqueal/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/genética , Proteínas Cromossômicas não Histona/genética , DNA Arqueal/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Elasticidade , Temperatura Alta , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/metabolismo , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Proteínas Recombinantes/metabolismo
4.
Biochem Soc Trans ; 41(1): 321-5, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356305

RESUMO

Crenarchaeal genomes are organized into a compact nucleoid by a set of small chromatin proteins. Although there is little knowledge of chromatin structure in Archaea, similarities between crenarchaeal and bacterial chromatin proteins suggest that organization and regulation could be achieved by similar mechanisms. In the present review, we describe the molecular properties of crenarchaeal chromatin proteins and discuss the possible role of these architectural proteins in organizing the crenarchaeal chromatin and in gene regulation.


Assuntos
DNA Arqueal/química , Cromatina/química , Cromatina/genética , DNA Arqueal/genética , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , Conformação Proteica
5.
Biochem Soc Trans ; 39(1): 116-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265758

RESUMO

Architectural proteins play an important role in compacting and organizing the chromosomal DNA in all three kingdoms of life (Eukarya, Bacteria and Archaea). These proteins are generally not conserved at the amino acid sequence level, but the mechanisms by which they modulate the genome do seem to be functionally conserved across kingdoms. On a generic level, architectural proteins can be classified based on their structural effect as DNA benders, DNA bridgers or DNA wrappers. Although chromatin organization in archaea has not been studied extensively, quite a number of architectural proteins have been identified. In the present paper, we summarize the knowledge currently available on these proteins in Crenarchaea. By the type of architectural proteins available, the crenarchaeal nucleoid shows similarities with that of Bacteria. It relies on the action of a large set of small, abundant and generally basic proteins to compact and organize their genome and to modulate its activity.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica
6.
Nat Struct Mol Biol ; 26(3): 185-192, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804513

RESUMO

CRISPR/Cas9 is a powerful genome-editing tool, but spurious off-target edits present a barrier to therapeutic applications. To understand how CRISPR/Cas9 discriminates between on-targets and off-targets, we have developed a single-molecule assay combining optical tweezers with fluorescence to monitor binding to λ-DNA. At low forces, the Streptococcus pyogenes Cas9 complex binds and cleaves DNA specifically. At higher forces, numerous off-target binding events appear repeatedly at the same off-target sites in a guide-RNA-sequence-dependent manner, driven by the mechanical distortion of the DNA. Using single-molecule Förster resonance energy transfer (smFRET) and cleavage assays, we show that DNA bubbles induce off-target binding and cleavage at these sites, even with ten mismatches, as well as at previously identified in vivo off-targets. We propose that duplex DNA destabilization during cellular processes (for example, transcription, replication, etc.) can expose these cryptic off-target sites to Cas9 activity, highlighting the need for improved off-target prediction algorithms.


Assuntos
Bacteriófago lambda/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Viral/metabolismo , Clivagem do DNA , DNA Viral/genética , Escherichia coli/virologia , Transferência Ressonante de Energia de Fluorescência , Edição de Genes , Microfluídica , Microscopia Confocal , Pinças Ópticas , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/enzimologia
7.
Sci Rep ; 6: 29422, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27403582

RESUMO

Sso10a proteins are small DNA-binding proteins expressed by the crenarchaeal model organism Sulfolobus solfataricus. Based on the structure of Sso10a1, which contains a winged helix-turn-helix motif, it is believed that Sso10a proteins function as sequence-specific transcription factors. Here we show that Sso10a1 and Sso10a2 exhibit different distinct DNA-binding modes. While the ability to bend DNA is shared between the two proteins, DNA bridging is observed only for Sso10a1 and only Sso10a2 exhibits filament formation along DNA. The architectural properties of Sso10a proteins suggest that these proteins fulfil generic roles in chromatin organization and compaction. As these proteins exhibit different binding behaviour depending on their DNA binding stoichiometry, altered levels of expression in the cell can be exploited to drive changes in local genome folding, which may operate to modulate transcription.


Assuntos
Proteínas Arqueais/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sulfolobus solfataricus/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Cromatina/química , Proteínas de Ligação a DNA/química , Genes Arqueais , Microscopia de Força Atômica , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/genética , Transcrição Gênica
8.
Nat Rev Microbiol ; 13(6): 333-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25944489

RESUMO

The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.


Assuntos
Archaea/fisiologia , Regulação da Expressão Gênica em Archaea/fisiologia , Genoma Arqueal/fisiologia , Archaea/genética , Cromatina/genética , Cromatina/fisiologia , Regulação da Expressão Gênica em Archaea/genética , Genoma Arqueal/genética , Histonas/genética , Histonas/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
9.
Nat Commun ; 3: 1328, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271660

RESUMO

Architectural proteins have an important role in shaping the genome and act as global regulators of gene expression. How these proteins jointly modulate genome plasticity is largely unknown. In archaea, one of the most abundant proteins, Alba, is considered to have a key role in organizing the genome. Here we characterize the multimodal architectural properties and interplay of the Alba1 and Alba2 proteins using single-molecule imaging and manipulation techniques. We demonstrate that the two paralogues can bridge and rigidify DNA and that the interplay between the two proteins influences the balance between these effects. Our data yield a structural model that explains the multimodal behaviour of Alba proteins and its impact on genome folding.


Assuntos
Proteínas Arqueais/metabolismo , DNA Arqueal/química , Proteínas de Ligação a DNA/metabolismo , Genoma Arqueal , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA Arqueal/genética , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA