Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Microbiol ; 25(9): 1728-1746, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36807446

RESUMO

Fruits harbour abundant and diverse microbial communities that protect them from post-harvest pathogens. Identification of functional traits associated with a given microbiota can provide a better understanding of their potential influence. Here, we focused on the epiphytic microbiome of apple fruit. We suggest that shotgun metagenomic data can indicate specific functions carried out by different groups and provide information on their potential impact. Samples were collected from the surface of 'Golden Delicious' apples from four orchards that differ in their geographic location and management practice. Approximately 1 million metagenes were predicted based on a high-quality assembly. Functional profiling of the microbiome of fruits from orchards differing in their management practice revealed a functional shift in the microbiota. The organic orchard microbiome was enriched in pathways involved in plant defence activities; the conventional orchard microbiome was enriched in pathways related to the synthesis of antibiotics. The functional significance of the variations was explored using microbial network modelling algorithms to reveal the metabolic role of specific phylogenetic groups. The analysis identified several associations supported by other published studies. For example, the analysis revealed the nutritional dependencies of the Capnodiales group, including the Alternaria pathogen, on aromatic compounds.


Assuntos
Ascomicetos , Malus , Microbiota , Frutas , Filogenia , Microbiota/genética
2.
New Phytol ; 234(6): 2088-2100, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34823272

RESUMO

Plants evolved in association with a diverse community of microorganisms. The effect of plant phylogeny and domestication on host-microbiome co-evolutionary dynamics are poorly understood. Here we examined the effect of domestication and plant lineage on the composition of the endophytic microbiome of 11 Malus species, representing three major groups: domesticated apple (M. domestica), wild apple progenitors, and wild Malus species. The endophytic community of M. domestica and its wild progenitors showed higher microbial diversity and abundance than wild Malus species. Heirloom and modern cultivars harbored a distinct community composition, though the difference was not significant. A community-wide Bayesian model revealed that the endophytic microbiome of domesticated apple is an admixture of its wild progenitors, with clear evidence for microbiome introgression, especially for the bacterial community. We observed a significant correlation between the evolutionary distance of Malus species and their microbiome. This study supports co-evolution between Malus species and their microbiome during domestication. This finding has major implications for future breeding programs and our understanding of the evolution of plants and their microbiomes.


Assuntos
Malus , Microbiota , Teorema de Bayes , Domesticação , Malus/genética , Malus/microbiologia , Filogenia , Melhoramento Vegetal
3.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36530065

RESUMO

Postharvest diseases of fruits and vegetables cause significant economic losses to producers and marketing firms. Many of these diseases are caused by necrotrophic fungal pathogens that require wounded or injured tissues to establish an infection. Biocontrol of postharvest diseases is an evolving science that has moved from the traditional paradigm of one organism controlling another organism to viewing biocontrol as a system involving the biocontrol agent, the pathogen, the host, the physical environment, and most recently the resident microflora. Thus, the paradigm has shifted from one of simplicity to complexity. The present review provides an overview of how the field of postharvest biocontrol has evolved over the past 40 years, a brief review of the biology of necrotrophic pathogens, the discovery of BCAs, their commercialization, and mechanisms of action. Most importantly, current research on the use of marker-assisted-selection, the fruit microbiome and its relationship to the pathobiome, and the use of double-stranded RNA as a biocontrol strategy is discussed. These latter subjects represent evolving trends in postharvest biocontrol research and suggestions for future research are presented.

4.
Environ Microbiol ; 23(10): 6038-6055, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33734550

RESUMO

We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.


Assuntos
Malus , Microbiota , Bactérias/genética , Frutas/microbiologia , Fungos/genética , Malus/microbiologia
5.
Compr Rev Food Sci Food Saf ; 20(5): 4906-4930, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34190408

RESUMO

Fruit-based diets are recognized for their benefits to human health. The safety of fruit is a global concern for scientists. Fruit microbiome represents the whole microorganisms that are associated with a fruit. These microbes are either found on the surfaces (epiphytes) or in the tissues of the fruit (endophytes). The recent knowledge gained from these microbial communities is considered relevant to the field of biological control in prevention of postharvest fruit pathology. In this study, the importance of the microbiome of certain fruits and how it holds promise for solving the problems inherent in biocontrol and postharvest crop protection are summarized. Research needs on the fruit microbiome are highlighted. Data from DNA sequencing and "meta-omics" technologies very recently applied to the study of microbial communities of fruits in the postharvest context are also discussed. Various fruit parameters, management practices, and environmental conditions are the main determinants of the microbiome. Microbial communities can be classified according to their structure and function in fruit tissues. A critical mechanism of microbial biological control agents is to reshape and interact with the microbiome of the fruit. The ability to control the microbiome of any fruit is a great potential in postharvest management of fruits. Research on the fruit microbiome offers important opportunities to develop postharvest biocontrol strategies and products, as well as the health profile of the fruit.


Assuntos
Frutas , Microbiota , Agentes de Controle Biológico , Endófitos , Humanos
6.
Mol Genet Genomics ; 295(6): 1415-1429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656702

RESUMO

Penicillium expansum is a destructive phytopathogen causing postharvest decay on many stored fruits. To develop effective and safe management strategies, it is important to investigate its pathogenicity-related mechanisms. In this study, a bioinformatic pipeline was constructed and 50 core effector genes were identified in P. expansum using multiple RNA-seq data sets and their putative functions were implicated by comparatively homologous analyses using pathogen-host interaction database. To functionally characterize P. expansum LysM domain proteins during infection, null mutants for the 15 uncharacterized putative LysM effectors were constructed and the fungal growth rate on either PDA or Cazpek medium or lesion expansion rate on the infected apple fruits was evaluated. The results showed the growth rate of knockout mutants from PeLysM5, PeLysM12 and PeLysM15 was retarded on PDA medium. No significant difference in growth rate was observed between wild type and all mutants on solid Cazpek medium. Nevertheless, the hypha of wild type displayed deeper yellow on the back of Cazpek medium than those of knockout mutants. On the infecting apples fruits, the knockout mutants from PeLysM5, PeLysM7, PeLysM8, PeLysM9, PeLysM10, PeLysM11, PeLysM14, PeLysM15, PeLysM16, PeLysM18 and PeLysM19 showed enhanced fungal virulence, with faster decaying on infected fruits than those from wild type. By contrast, the knockout mutation at PeLysM12 locus led to reduced lesion expansion rate on the infected apple fruits. In addition, P. expansum-apple interaction RNA-seq experiment was performed using apple fruit tissues infected by the wild type and knockout mutant ΔPeLysM15, respectively. Transcriptome analyses indicated that deletion of PeLysM15 could activate expression of several core effector genes, such as PEX2_055830, PEX2_036960 and PEX2_108150, and a chitin-binding protein, PEX2_064520. These results suggest PeLysM15 may play pivotal roles in fungal growth and development and involve pathogen-host interaction by modulating other effector genes' expression. Our results could provide solid data reference and good candidates for further pathogen-related studies in P. expansum.


Assuntos
Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Malus/microbiologia , Penicillium/crescimento & desenvolvimento , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Transcriptoma , Frutas/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Malus/genética , Penicillium/genética , Doenças das Plantas/genética , Virulência
7.
Mol Plant Microbe Interact ; 28(3): 232-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25338147

RESUMO

The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper.


Assuntos
Citrus/microbiologia , Genoma Fúngico/genética , Penicillium/genética , Doenças das Plantas/microbiologia , Metabolismo Secundário , Transcriptoma , Sequência de Bases , Citrinina/metabolismo , Frutas/microbiologia , Técnicas de Inativação de Genes , Biblioteca Gênica , Genômica , Especificidade de Hospedeiro , Dados de Sequência Molecular , Patulina/metabolismo , Penicillium/metabolismo , Penicillium/patogenicidade , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Virulência , Fatores de Virulência/genética
8.
Appl Environ Microbiol ; 81(9): 2968-75, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710368

RESUMO

Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance.


Assuntos
Microbiologia de Alimentos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Interações Microbianas , Controle Biológico de Vetores/métodos
9.
Microb Ecol ; 69(1): 204-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25135816

RESUMO

Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.


Assuntos
Hemípteros/microbiologia , Animais
10.
Int J Food Microbiol ; 417: 110710, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38643598

RESUMO

Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.


Assuntos
Antifúngicos , Botrytis , Ácidos Cafeicos , Penicillium , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Alternaria/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Conservação de Alimentos/métodos , Geotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Microbiologia de Alimentos , Frutas/microbiologia , Estresse Oxidativo/efeitos dos fármacos
11.
Front Microbiol ; 15: 1330865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577679

RESUMO

Kiwifruit vine decline syndrome (KVDS) is characterized by severe root system impairment, which leads to irreversible wilting of the canopy. Plants usually collapse rapidly from the appearance of the first aboveground symptoms, without recovery even in the following seasons. The syndrome has been negatively impacting kiwifruit yield in different areas of Italy, the main producing European country, since its first outbreak in 2012. To date, a unique, common causal factor has yet to be found, and the syndrome is referred to as multifactorial. In this article, we investigated the whole biotic community (fungi, bacteria, and oomycetes) associated with the development of KVDS in three different belowground matrices/compartments (soil, rhizosphere, and root). Sampling was performed at both healthy and affected sites located in the main kiwifruit-producing area of Northwestern Italy. To address the multifactorial nature of the syndrome and to investigate the potential roles of abiotic factors in shaping these communities, a physicochemical analysis of soils was also performed. This study investigates the associations among taxonomic groups composing the microbiome and also between biotic and abiotic factors. Dysbiosis was considered as a driving event in shaping KVDS microbial communities. The results obtained from this study highlight the role of the oomycete genus Phytopythium, which resulted predominantly in the oomycete community composition of diseased matrices, though it was also present in healthy ones. Both bacterial and fungal communities resulted in a high richness of genera and were highly correlated to the sampling site and matrix, underlining the importance of multiple location sampling both geographically and spatially. The rhizosphere community associated with KVDS was driven by a dysbiotic process. In addition, analysis of the association network in the diseased rhizosphere revealed the presence of potential cross-kingdom competition for plant-derived carbon between saprobes, oomycetes, and bacteria.

12.
BMC Genomics ; 14: 168, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23496978

RESUMO

BACKGROUND: The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. RESULTS: More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). CONCLUSION: This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum.


Assuntos
Regulação Fúngica da Expressão Gênica , Metschnikowia/genética , Doenças das Plantas/genética , Citrus paradisi/química , Citrus paradisi/genética , Frutas/genética , Frutas/microbiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metschnikowia/metabolismo , Penicillium/genética , Penicillium/patogenicidade , Doenças das Plantas/microbiologia
13.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043188

RESUMO

The endophytic microbiome of plants is believed to have a significant impact on its physiology and disease resistance, however, the role of host genotype in determining the composition of the endophytic microbiome of apple root systems remains an open question that has important implications for defining breeding objectives. In the current study, the bacterial and fungal microbiota associated with four different apple rootstocks planted in April, 2018 in the same soil environment and harvested in May, 2019 were evaluated to determine the role of genotype on the composition of both the bacterial and fungal communities. Results demonstrated a clear impact of genotype and root size on microbial composition and diversity. The fungal community was more affected by plant genotype whereas the bacterial community was shaped by root size. Fungal and bacterial abundance was equal between different-sized roots however, significantly higher microbial counts were detected in rhizosphere samples compared to root endosphere samples. This study provides information that can be used to develop a comprehensive and readily applicable understanding of the impact of genotype and environmental factors on the establishment of plant microbiome, as well as its potential function and impact on host physiology.

14.
Front Microbiol ; 13: 928888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016781

RESUMO

Microbial communities associated with fruit can contribute to quality and pathogen resistance, but little is known about their assembly and dynamics during fruit development and storage. Three apple cultivars growing under the same environmental conditions were utilized to examine the apple carposphere microbiome composition and structure at different developmental stages and storage. There was a significant effect (Adonis, p ≤ 0.001) of fruit genotype and its developmental stages and storage times on the fruit surface microbial assemblage and a strong temporal microbial community succession was detected (Mantel test: R ≤ 0.5, p = 0.001) in both bacterial and fungal communities. A set of 15 bacterial and 35 fungal core successional taxa and members exhibiting differential abundances at different fruit stages were identified. For the first time, we show the existence of underlying universal dynamics in the assembly of fruit-associated microbiomes. We also provide evidence of strong microbial cross-domain associations and uncover potential microbe-microbe correlations in the apple carposphere. Together our findings shed light on how the fruit carposphere assemble and change over time, and provide new insights into fruit microbial ecology.

15.
Microorganisms ; 9(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467169

RESUMO

Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.

16.
J Fungi (Basel) ; 7(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34575819

RESUMO

Wheat grains are colonized by complex microbial communities that have the potential to affect seed quality and susceptibility to disease. Some of the beneficial microbes in these communities have been shown to protect plants against pathogens through antagonism. We evaluated the role of the microbiome in seed health: in particular, against mycotoxin-producing fungi. Amplicon sequencing was used to characterize the seed microbiome and determine if epiphytes and endophytes differ in their fungal and bacterial diversity and community composition. We then isolated culturable fungal and bacterial species and evaluated their antagonistic activity against mycotoxigenic fungi. The most prevalent taxa were found to be shared between the epiphytic and endophytic microbiota of stored wheat seeds. Among the isolated bacteria, Bacillus strains exhibited strong antagonistic properties against fungal pathogens with noteworthy fungal load reduction in wheat grain samples of up to a 3.59 log10 CFU/g compared to untreated controls. We also found that a strain of the yeast, Rhodotorula glutinis, isolated from wheat grains, degrades and/or metabolizes aflatoxin B1, one of the most dangerous mycotoxins that negatively affects physiological processes in animals and humans. The mycotoxin level in grain samples was significantly reduced up to 65% in the presence of the yeast strain, compared to the untreated control. Our study demonstrates that stored wheat grains are a rich source of bacterial and yeast antagonists with strong inhibitory and biodegradation potential against mycotoxigenic fungi and the mycotoxins they produce, respectively. Utilization of these antagonistic microorganisms may help reduce fungal and mycotoxin contamination, and potentially replace traditionally used synthetic chemicals.

17.
Plants (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961112

RESUMO

Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.

18.
Microorganisms ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442808

RESUMO

Endophytic microorganisms present inside the host plant play an essential role in host fitness, nutrient supply and stress tolerance. Endophytes are often used in sustainable agriculture as biofertilizers, biopesticides and as inoculants to mitigate abiotic stresses including salinity, drought, cold and pH variation in the soil. In changing climatic conditions, abiotic stresses create global challenges to achieve optimum crop yields in agricultural production. Plants experience stress conditions that involve endogenous boosting of their immune system or the overexpression of their defensive redox regulatory systems with increased reactive oxygen species (ROS). However, rising stress factors overwhelm the natural redox protection systems of plants, which leads to massive internal oxidative damage and death. Endophytes are an integral internal partner of hosts and have been shown to mitigate abiotic stresses via modulating local or systemic mechanisms and producing antioxidants to counteract ROS in plants. Advancements in omics and other technologies have been made, but potential application of endophytes remains largely unrealized. In this review article, we will discuss the diversity, population and interaction of endophytes with crop plants as well as potential applications in abiotic stress management.

19.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573103

RESUMO

In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.

20.
Front Microbiol ; 11: 295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158440

RESUMO

Candida oleophila is an effective biocontrol agent used to control post-harvest diseases of fruits and vegetables. C. oleophila I-182 was the active agent used in the first-generation yeast-based commercial product, Aspire®, for post-harvest disease management. Several action modes, like competition for nutrients and space, induction of pathogenesis-related genes in host tissues, and production of extracellular lytic enzymes, have been demonstrated for the biological control activity exhibited by C. oleophila through which it inhibits post-harvest pathogens. In the present study, the whole genome of C. oleophila I-182 was sequenced using PacBio and Illumina shotgun sequencing technologies, yielding an estimated genome size of 14.73 Mb. The genome size is similar in length to that of the model yeast strain Saccharomyces cerevisiae S288c. Based on the assembled genome, protein-coding sequences were identified and annotated. The predicted genes were further assigned with gene ontology terms and clustered in special functional groups. A comparative analysis of C. oleophila proteome with the proteomes of 11 representative yeasts revealed 2 unique and 124 expanded families of proteins in C. oleophila. Availability of the genome sequence will facilitate a better understanding the properties of biocontrol yeasts at the molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA