Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(5): 1050-60, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855943

RESUMO

DNA methylation is a conserved epigenetic gene-regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homodimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the small interfering RNA (siRNA) effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for RNA polymerase V-mediated noncoding RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts.


Assuntos
Arabidopsis/enzimologia , Metiltransferases/metabolismo , Nicotiana/enzimologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Domínio Catalítico , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Nicotiana/metabolismo
2.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38072749

RESUMO

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , DNA de Plantas/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA não Traduzido/genética , Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA Interferente Pequeno/metabolismo
3.
Nat Rev Mol Cell Biol ; 16(9): 519-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296162

RESUMO

Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk.


Assuntos
Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases
4.
Cell ; 151(1): 167-80, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021223

RESUMO

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.


Assuntos
Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA de Plantas/metabolismo , Nucleossomos/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferases/química , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Zea mays/genética
5.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580600

RESUMO

Dimethylated histone H3 Lys9 (H3K9me2) is a conserved heterochromatic mark catalyzed by SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) methyltransferases in plants. However, the mechanism underlying the locus specificity of SUVH enzymes has long been elusive. Here, we show that a conserved N-terminal motif is essential for SUVH6-mediated H3K9me2 deposition in planta. The SUVH6 N-terminal peptide can be recognized by the bromo-adjacent homology (BAH) domain of the RNA- and chromatin-binding protein ANTI-SILENCING 1 (ASI1), which has been shown to function in a complex to confer gene expression regulation. Structural data indicate that a classic aromatic cage of ASI1-BAH domain specifically recognizes an arginine residue of SUVH6 through extensive hydrogen bonding interactions. A classic aromatic cage of ASI1 specifically recognizes an arginine residue of SUVH6 through extensive cation-π interactions, playing a key role in recognition. The SUVH6-ASI1 module confers locus-specific H3K9me2 deposition at most SUVH6 target loci and gives rise to distinct regulation of gene expression depending on the target loci, either conferring transcriptional silencing or posttranscriptional processing of mRNA. More importantly, such mechanism is conserved in multiple plant species, indicating a coordinated evolutionary process between SUVH6 and ASI1. In summary, our findings uncover a conserved mechanism for the locus specificity of H3K9 methylation in planta. These findings provide mechanistic insights into the delicate regulation of H3K9 methylation homeostasis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Arginina/metabolismo , Catálise
6.
Plant Cell ; 34(6): 2140-2149, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35188193

RESUMO

In plants, the biogenesis of small interfering RNA (siRNA) requires a family of RNA-dependent RNA polymerases that convert single-stranded RNA (ssRNA) into double-stranded RNA (dsRNA), which is subsequently cleaved into defined lengths by Dicer endonucleases. Here, we determined the structure of maize (Zea mays) RNA-DEPENDENT RNA POLYMERASE 2 (ZmRDR2) in the closed and open conformations. The core catalytic region of ZmRDR2 possesses the canonical DNA-dependent RNA polymerase (DdRP) catalytic sites, pointing to a shared RNA production mechanism between DdRPs and plant RDR-family proteins. Apo-ZmRDR2 adopts a highly compact structure, representing an inactive closed conformation. By contrast, adding RNA induced a significant conformational change in the ZmRDR2 Head domain that opened the RNA binding tunnel, suggesting this is an active elongation conformation of ZmRDR2. Overall, our structural studies trapped both the active and inactive conformations of ZmRDR2, providing insights into the molecular mechanism of dsRNA synthesis during plant siRNA production.


Assuntos
RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , RNA de Cadeia Dupla/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética
7.
Plant Cell ; 34(8): 2871-2891, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35522002

RESUMO

Seed germination represents a major developmental switch in plants that is vital to agriculture, but how this process is controlled at the chromatin level remains obscure. Here we demonstrate that successful germination in Arabidopsis thaliana requires a chromatin mechanism that progressively silences 9-CIS-EPOXYCAROTENOID DIOXYGENASE 6 (NCED6), which encodes a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, through the cooperative action of the RNA-binding protein RZ-1 and the polycomb repressive complex 2 (PRC2). Simultaneous inactivation of RZ-1 and PRC2 blocked germination and synergistically derepressed NCEDs and hundreds of genes. At NCED6, in part by promoting H3 deacetylation and suppressing H3K4me3, RZ-1 facilitates transcriptional silencing and also an H3K27me3 accumulation process that occurs during seed germination and early seedling growth. Genome-wide analysis revealed that RZ-1 is preferentially required for transcriptional silencing of many PRC2 targets early during seed germination, when H3K27me3 is not yet established. We propose RZ-1 confers a novel silencing mechanism to compensate for and synergize with PRC2. Our work highlights the progressive chromatin silencing of ABA biosynthesis genes via the RNA-binding protein RZ-1 and PRC2 acting in synergy, a process that is vital for seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Histonas/genética , Histonas/metabolismo , Sementes
8.
Plant Cell ; 33(9): 2950-2964, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34117872

RESUMO

DNA methylation in the non-CG context is widespread in the plant kingdom and abundant in mammalian tissues such as the brain and pluripotent cells. Non-CG methylation in Arabidopsis thaliana is coordinately regulated by DOMAINS REARRANGED METHYLTRANSFERASE (DRM) and CHROMOMETHYLASE (CMT) proteins but has yet to be systematically studied in major crops due to difficulties in obtaining genetic materials. Here, utilizing the highly efficient multiplex CRISPR-Cas9 genome-editing system, we created single- and multiple-knockout mutants for all the nine DNA methyltransferases in rice (Oryza sativa) and profiled their whole-genome methylation status at single-nucleotide resolution. Surprisingly, the simultaneous loss of DRM2, CHROMOMETHYLASE3 (CMT2), and CMT3 functions, which completely erases all non-CG methylation in Arabidopsis, only partially reduced it in rice. The regions that remained heavily methylated in non-CG contexts in the rice Os-dcc (Osdrm2/cmt2/cmt3a) triple mutant had high GC contents. Furthermore, the residual non-CG methylation in the Os-dcc mutant was eliminated in the Os-ddccc (Osdrm2/drm3/cmt2/cmt3a/cmt3b) quintuple mutant but retained in the Os-ddcc (Osdrm2/drm3/cmt2/cmt3a) quadruple mutant, demonstrating that OsCMT3b maintains non-CG methylation in the absence of other major methyltransferases. Our results showed that OsCMT3b is subfunctionalized to accommodate a distinct cluster of non-CG-methylated sites at highly GC-rich regions in the rice genome.


Assuntos
Metilação de DNA , Metiltransferases/genética , Oryza/genética , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Edição de Genes , Metiltransferases/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Cell ; 33(4): 1182-1195, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33693873

RESUMO

Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
10.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446554

RESUMO

Arabidopsis TEMPRANILLO 1 (TEM1) is a transcriptional repressor that participates in multiple flowering pathways and negatively regulates the juvenile-to-adult transition and the flowering transition. To understand the molecular basis for the site-specific regulation of FLOWERING LOCUS T (FT) by TEM1, we determined the structures of the two plant-specific DNA-binding domains in TEM1, AP2 and B3, in complex with their target DNA sequences from the FT gene 5'-untranslated region (5'-UTR), revealing the molecular basis for TEM1 specificity for its DNA targets. In vitro binding assays revealed that the combination of the AP2 and B3 binding sites greatly enhanced the overall binding of TEM1 to the FT 5'-UTR, indicating TEM1 combinatorically recognizes the FT gene 5'-UTR. We further showed that TEM1 recruits the Polycomb repressive complex 2 (PRC2) to the FT 5'-UTR. The simultaneous binding of the TEM1 AP2 and B3 domains to FT is necessary for deposition of H3K27me3 at the FT 5'-UTR and for the flowering repressor function of TEM1. Overall, our data suggest that the combinatorial recognition of FT 5'-UTR by TEM1 ensures H3K27me3 deposition to precisely regulate the floral transition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Fotoperíodo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética
11.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358072

RESUMO

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos
12.
Mol Cell ; 55(3): 495-504, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25018018

RESUMO

In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilação de DNA , DNA de Plantas/química , DNA de Plantas/genética , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/fisiologia , Arabidopsis/química , Arabidopsis/metabolismo , Sítios de Ligação/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Modelos Moleculares , S-Adenosil-Homocisteína/metabolismo , Difração de Raios X
13.
Adv Exp Med Biol ; 1389: 137-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350509

RESUMO

DNA methylation is an important epigenetic mark conserved in eukaryotes from fungi to animals and plants, where it plays a crucial role in regulating gene expression and transposon silencing. Once the methylation mark is established by de novo DNA methyltransferases, specific regulatory mechanisms are required to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plant DNA methylation is found in three contexts; CG, CHG, and CHH (H = A, T, C), which are established and maintained by a unique set of DNA methyltransferases and are regulated by plant-specific pathways. DNA methylation in plants is often associated with other epigenetic modifications, such as noncoding RNA and histone modifications. This chapter focuses on the structure, function, and regulatory mechanism of plant DNA methyltransferases and their crosstalk with other epigenetic pathways.


Assuntos
Arabidopsis , Metilação de DNA , Animais , Metiltransferases/genética , DNA de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Metilases de Modificação do DNA/genética , Plantas/genética , Plantas/metabolismo
14.
Genes Dev ; 28(15): 1667-80, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085419

RESUMO

Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.


Assuntos
Cromatina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Precursores de RNA/metabolismo , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética , Animais , Cromatina/química , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Proteínas de Drosophila/metabolismo , Epigênese Genética , Histonas/metabolismo , Família Multigênica/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Transgenes
15.
J Integr Plant Biol ; 64(3): 731-740, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35023269

RESUMO

The transcription factor CONSTANS (CO) integrates day-length information to induce the expression of florigen FLOWERING LOCUS T (FT) in Arabidopsis. We recently reported that the C-terminal CCT domain of CO forms a complex with NUCLEAR FACTOR-YB/YC to recognize multiple cis-elements in the FT promoter, and the N-terminal tandem B-box domains form a homomultimeric assembly. However, the mechanism and biological function of CO multimerization remained unclear. Here, we report that CO takes on a head-to-tail oligomeric configuration via its B-boxes to mediate FT activation in long days. The crystal structure of B-boxesCO reveals a closely connected tandem B-box fold forming a continuous head-to-tail assembly through unique CDHH zinc fingers. Mutating the key residues involved in CO oligomerization resulted in a non-functional CO, as evidenced by the inability to rescue co mutants. By contrast, a transgene encoding a human p53-derived tetrameric peptide in place of the B-boxesCO rescued co mutant, emphasizing the essential role of B-boxesCO -mediated oligomerization. Furthermore, we found that the four TGTG-bearing cis-elements in FT proximal promoter are required for FT activation in long days. Our results suggest that CO forms a multimer to bind to the four TGTG motifs in the FT promoter to mediate FT activation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo
16.
J Integr Plant Biol ; 64(12): 2385-2395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149781

RESUMO

DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Transporte/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , DNA/metabolismo
17.
Plant Cell ; 30(1): 167-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233856

RESUMO

In chromatin, histone methylation affects the epigenetic regulation of multiple processes in animals and plants and is modulated by the activities of histone methyltransferases and histone demethylases. The jumonji domain-containing histone demethylases have diverse functions and can be classified into several subfamilies. In humans, the jumonji domain-containing Lysine (K)-Specific Demethylase 5/Jumonji and ARID Domain Protein (KDM5/JARID) subfamily demethylases are specific for histone 3 lysine 4 trimethylation (H3K4me3) and are important drug targets for cancer treatment. In Arabidopsis thaliana, the KDM5/JARID subfamily H3K4me3 demethylase JUMONJI14 (JMJ14) plays important roles in flowering, gene silencing, and DNA methylation. Here, we report the crystal structures of the JMJ14 catalytic domain in both substrate-free and bound forms. The structures reveal that the jumonji and C5HC2 domains contribute to the specific recognition of the H3R2 and H3Q5 to facilitate H3K4me3 substrate specificity. The critical acidic residues are conserved in plants and animals with the corresponding mutations impairing the enzyme activity of both JMJ14 and human KDM5B, indicating a common substrate recognition mechanism for KDM5 subfamily demethylases shared by plants and animals and further informing efforts to design targeted inhibitors of human KDM5.


Assuntos
Proteínas de Arabidopsis/metabolismo , Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Domínio Catalítico , Sequência Conservada , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
18.
Proc Natl Acad Sci U S A ; 115(49): E11551-E11560, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30446614

RESUMO

Resistance (R) genes encode intracellular nucleotide-binding/leucine-rich repeat-containing (NLR) family proteins that serve as critical plant immune receptors to induce effector-triggered immunity (ETI). NLR proteins possess a tripartite domain architecture consisting of an N-terminal variable region, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat. N-terminal coiled-coil (CC) or Toll-interleukin 1 receptor (TIR) domains of R proteins appear to serve as platforms to trigger immune responses, because overexpression of the CC or TIR domain of some R proteins is sufficient to induce an immune response. Because direct downstream signaling molecules of R proteins remain obscure, the molecular mechanisms by which R proteins regulate downstream signaling are largely unknown. We reported previously that a rice R protein named Pit triggers ETI through a small GTPase, OsRac1, although how Pit activates OsRac1 is unclear. Here, we identified OsSPK1, a DOCK family guanine nucleotide exchange factor, as an interactor of Pit and activator for OsRac1. OsSPK1 contributes to signaling by two disease-resistance genes, Pit and Pia, against the rice blast fungus Magnaporthe oryzae and facilitates OsRac1 activation in vitro and in vivo. The CC domain of Pit is required for its binding to OsSPK1, OsRac1 activation, and the induction of cell death. Overall, we conclude that OsSPK1 is a direct and key signaling target of Pit-mediated immunity. Our results shed light on how R proteins trigger ETI through direct downstream molecules.


Assuntos
Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Magnaporthe , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
19.
Proc Natl Acad Sci U S A ; 115(37): E8793-E8802, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150382

RESUMO

DNA methylation functions in gene silencing and the maintenance of genome integrity. In plants, non-CG DNA methylation is linked through a self-reinforcing loop with histone 3 lysine 9 dimethylation (H3K9me2). The plant-specific SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) family H3K9 methyltransferases (MTases) bind to DNA methylation marks and catalyze H3K9 methylation. Here, we analyzed the structure and function of Arabidopsis thaliana SUVH6 to understand how this class of enzyme maintains methylation patterns in the genome. We reveal that SUVH6 has a distinct 5-methyl-dC (5mC) base-flipping mechanism involving a thumb loop element. Autoinhibition of H3 substrate entry is regulated by a SET domain loop, and a conformational transition in the post-SET domain upon cofactor binding may control catalysis. In vitro DNA binding and in vivo ChIP-seq data reveal that the different SUVH family H3K9 MTases have distinct DNA binding preferences, targeting H3K9 methylation to sites with different methylated DNA sequences, explaining the context biased non-CG DNA methylation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Metilação , Modelos Moleculares , Conformação de Ácido Nucleico , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica
20.
J Integr Plant Biol ; 63(6): 1091-1096, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33913587

RESUMO

RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize.


Assuntos
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA