Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901844

RESUMO

Histone acetylation is the earliest and most well-characterized of post-translation modifications. It is mediated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Histone acetylation could change the chromatin structure and status and further regulate gene transcription. In this study, nicotinamide, a histone deacetylase inhibitor (HDACi), was used to enhance the efficiency of gene editing in wheat. Transgenic immature and mature wheat embryos harboring a non-mutated GUS gene, the Cas9 and a GUS-targeting sgRNA were treated with nicotinamide in two concentrations (2.5 and 5 mM) for 2, 7, and 14 days in comparison with a no-treatment control. The nicotinamide treatment resulted in GUS mutations in up to 36% of regenerated plants, whereas no mutants were obtained from the non-treated embryos. The highest efficiency was achieved when treated with 2.5 mM nicotinamide for 14 days. To further validate the impact of nicotinamide treatment on the effectiveness of genome editing, the endogenous TaWaxy gene, which is responsible for amylose synthesis, was tested. Utilizing the aforementioned nicotinamide concentration to treat embryos containing the molecular components for editing the TaWaxy gene, the editing efficiency could be increased to 30.3% and 13.3%, respectively, for immature and mature embryos in comparison to the 0% efficiency observed in the control group. In addition, nicotinamide treatment during transformation progress could also improve the efficiency of genome editing approximately threefold in a base editing experiment. Nicotinamide, as a novel approach, may be employed to improve the editing efficacy of low-efficiency genome editing tools such as base editing and prime editing (PE) systems in wheat.


Assuntos
Edição de Genes , Triticum , Edição de Genes/métodos , Triticum/genética , Sistemas CRISPR-Cas , Histonas/genética , Mutação
2.
Plant Cell Rep ; 40(7): 1155-1170, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33950277

RESUMO

KEY MESSAGE: The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat. Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants. Ornithine aminotransferase (OAT) is pyridoxal-5-phosphate dependent enzyme involved in plant proline biosynthesis. During stress condition, proline is synthesized via glutamate and ornithine pathways. The OAT is the key enzyme in ornithine pathway. In this study, an OAT gene AtOAT from Arabidopsis was expressed in wheat for its functional characterization under drought, salinity, and heat stress conditions. We found that the expression of AtOAT enhanced the drought and salt stress tolerances of wheat by increasing the proline content and peroxidase activity. In addition, it was confirmed that the expression of AtOAT also played a partial tolerance to heat stress in the transgenic wheat plants. Moreover, quantitative real-time PCR (qRT-PCR) analysis showed that the transformation of AtOAT up-regulated the expression of the proline biosynthesis associated genes TaOAT, TaP5CS, and TaP5CR, and down-regulated that of the proline catabolism related gene TaP5CDH in the transgenic plants under stress conditions. Moreover, the genes involved in ornithine pathway (Orn-OAT-P5C/GSA-P5CR-Pro) were up-regulated along with the up-regulation of those genes involved in glutamate pathway (Glu-P5CS-P5C/GSA-P5CR-Pro). Therefore, we concluded that the expression of AtOAT enhanced wheat abiotic tolerance via modifying the proline biosynthesis by up-regulating the expression of the proline biosynthesis-associated genes and down-regulating that of the proline catabolic gene under stresses condition.


Assuntos
Proteínas de Arabidopsis/genética , Ornitina-Oxo-Ácido Transaminase/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Triticum/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Plantas Geneticamente Modificadas/genética , Prolina/genética , Prolina/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/fisiologia , Triticum/genética
3.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502234

RESUMO

The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative WOX genes were identified. Most of the identified WOX genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach. Parts of WOX genes in Triticum aestivum were confirmed by the specific PCR markers using a set of Triticum. durum-T. aestivum genome D substitution lines. All of these identified WOX proteins could be grouped into three clades, similar to those in rice and Arabidopsis. WOX family members were conserved among these Triticeae plants; all of them contained the HOX DNA-binding homeodomain, and WUS clade members contained the characteristic WUS-box motif, while only WUS and WOX9 contained the EAR motif. The RNA-seq and qPCR analysis revealed that the TaWOX genes had tissue-specific expression feature. From the expression patterns of TaWOX genes during immature embryo callus production, TaWOX9 is likely closely related with the regulation of regeneration process in T. aestivum. The findings in this study could provide a basis for evolution and functional investigation and practical application of the WOX family genes in Triticeae species.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/genética , Sequência de Aminoácidos , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
4.
J Exp Bot ; 71(4): 1337-1349, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31760434

RESUMO

The use of CRISPR/LbCpf1 and CRISPR/xCas9 systems in wheat have not yet been reported. In this study, we compared the efficiencies of three CRISPR editing systems (SpCas9, LbCpf1, and xCas9), and three different promoters (OsU6a, TaU3, and TaU6) that drive single-guide (sg)RNA, which were introduced into wheat via Agrobacterium-mediated transformation. The results indicated that TaU3 was a better choice than OsU6a or TaU6. The editing efficiency was higher using two sgRNAs than one sgRNA, and mutants with a large fragment deletion between the two sgRNAs were produced. The LbCpf1 and xCas9 systems could both be used successfully. Two endogenous genes, TaWaxy and TaMTL, were edited with high efficiency by the optimized SpCas9 system, with the highest efficiency (80.5%) being achieved when using TaU3 and two sgRNAs to target TaWaxy. Rates of seed set in the TaMTL-edited T0 transgenic plants were much lower than that of the wild-type. A haploid induction rate of 18.9% was found in the TaMTL-edited T1 plants using the CRISPR/SpCas9 system. Mutants with reverse insertion of the deleted sequences of TaMTL and TaWaxy between the two sgRNAs were identified in the edited T0 plants. In addition, wheat grains lacking embryos or endosperms were observed in the TaMTL-edited T1 generation.


Assuntos
Agrobacterium , Edição de Genes , Agrobacterium/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haploidia , Triticum/genética
5.
Theor Appl Genet ; 133(11): 3067-3083, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32685983

RESUMO

KEY MESSAGE: Three genes designated DvLox, Pm21#4, and Pm21#4-H identified in a wheat-Dasypyrum villosum#4 T6V#4S·6DL translocation line Pm97033 conferred wheat for powdery mildew resistance. Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most devastating diseases in wheat. To date, only a few genes conferring resistance to wheat PM are cloned. Dasypyrum villosum is a wild relative of wheat, which provides Pm21 conferring wheat immunity to PM. In this study, we obtained many differentially expressed genes (DEGs) from a wheat-D. villosum#4 T6V#4S·6DL translocation line Pm97033 using RNA-sequencing. Among them, 7 DEGs associated with pathogen resistance were up-regulated in front of Bgt infection. Virus-induced gene silencing and transformation assays demonstrated that two of them, DvLox and Pm21#4 encoding a lipoxygenase and a encoding coiled-coil/nucleotide-binding site/leucine-rich repeat resistance protein, conferred wheat PM resistance. The transgenic wheat plants expressing DvLox enhanced PM resistance, and the transgenic wheat plants expressing Pm21#4 showed PM immunity. The Pm21#4-silenced Pm97033 plants by the cluster regularly interspaced short palindromic repeats-associated endonuclease (CRISPR/Cas9) system were susceptible to PM. Thus, Pm21#4 is a key gene contributing PM immune resistance in Pm97033. Constitutively expression of Pm21#4-H, which is silenced in Pm97033 and D. villosum#4, endowed a PM-susceptible wheat variety Fielder with PM immune resistance.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Sistemas CRISPR-Cas , Proteínas de Repetições Ricas em Leucina , Lipoxigenase/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/microbiologia , Proteínas/genética , Transcriptoma , Translocação Genética , Triticum/genética
6.
BMC Genomics ; 20(1): 289, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987602

RESUMO

BACKGROUND: Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D. villosum accessions, D. villosum#4 still remains less studied. In particular, chromosomes of D. villosum#4 except 6V#4 have not been introduced into wheat by addition or substitution and translocation, which is an essential step to identify and apply the alien desired genes. RNA-seq technology can generate large amounts of transcriptome sequences and accelerate the development of chromosome-specific molecular markers and assisted selection of alien chromosome line. RESULTS: We obtained the transcriptome of D. villosum#4 via a high-throughput sequencing technique, and then developed 76 markers specific to each chromosome arm of D. villosum#4 based on the bioinformatic analysis of the transcriptome data. The D. villosum#4 sequences containing the specific DNA markers were expected to be involved in different genes, among which most had functions in metabolic processes. Consequently, we mapped these newly developed molecular markers to the homologous chromosome of barley and obtained the chromosome localization of these markers on barley genome. Then we analyzed the collinearity of these markers among D. villosum, wheat, and barley. In succession, we identified six types of T. aestivum-D. villosum#4 alien chromosome lines which had one or more than one D. villosum#4 chromosome in the cross and backcross BC3F5 populations between T. durum-D. villosum#4 amphidiploid TH3 and wheat cv. Wan7107 by employing the selected specific markers, some of which were further confirmed to be translocation or addition lines by genomic in situ hybridization (GISH). CONCLUSION: Seventy-six PCR markers specific to chromosomes of D. villosum#4 based on transcriptome data were developed in the current study and their collinearity among D. villosum, wheat, and barley were carried out. Six types of Triticum aestivum-D. villosum#4 alien chromosome lines were identified by using 12 developed markers and some of which were further confirmed by GISH. These novel T. aestivum-D. villosum#4 chromosome lines have great potential to be used for the introduction of desirable genes from D. villosum#4 into wheat by chromosomal translocation to breed new wheat varieties.


Assuntos
Cruzamento , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Genômica , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase
7.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752300

RESUMO

Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.


Assuntos
Antocianinas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Zea mays/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas/genética , Pigmentação/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética
8.
Theor Appl Genet ; 131(1): 13-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28887628

RESUMO

KEY MESSAGE: Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat- Ae. longissima 1BL·1S l S translocation lines were identified using the correspondence markers. Aegilops longissima is an important wild species of common wheat that harbors many genes that can be used to improve various traits of common wheat (Triticum aestivum L.). To efficiently transfer the traits conferred by these Ae. longissima genes into wheat, we sequenced the whole expression transcript of Ae. longissima. Using the transcriptome data, we developed 134 specific polymerase chain reaction markers located on the 14 chromosome arms of Ae. longissima. These novel molecular markers were assigned to specific chromosome locations based on a comparison with the homologous genes in the B genome of wheat. Annotation of these genes showed that most had functions related to metabolic processes, hydrolase activity, or catalytic activity. Additionally, we used these markers to identify three wheat-Ae. longissima 1BL·1SlS translocation lines in somatic variation populations resulting from a cross between wheat cultivar Westonia and a wheat-Ae. longissima substitution line 1Sl(1B). The translocation lines had several low molecular weight glutenin subunits encoding genes beneficial to flour processing quality that came from Ae. longissima 1SlS. The three translocation lines were also confirmed by genomic in situ hybridization. These translocation lines will be further evaluated for potential quality improvement of bread-making properties of wheat.


Assuntos
Marcadores Genéticos , Melhoramento Vegetal , Poaceae/genética , Translocação Genética , Cromossomos de Plantas , Glutens , Reação em Cadeia da Polimerase , Transcriptoma , Triticum
9.
Plant Biotechnol J ; 15(5): 614-623, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862820

RESUMO

Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.


Assuntos
Agrobacterium/genética , Marcadores Genéticos , Plantas Geneticamente Modificadas , Triticum/genética , China , Cruzamentos Genéticos , Metilação de DNA , Inativação Gênica , Poliploidia , Regiões Promotoras Genéticas , Transformação Bacteriana
10.
Plant Biotechnol J ; 15(6): 674-687, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27862842

RESUMO

The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R. cerealis. In this study, a wheat NB-LRR gene, named TaRCR1, was identified in response to R. cerealis infection using Artificial Neural Network analysis based on comparative transcriptomics and its defence role was characterized. The transcriptional level of TaRCR1 was enhanced after R. cerealis inoculation and associated with the resistance level of wheat. TaRCR1 was located on wheat chromosome 3BS and encoded an NB-LRR protein that was consisting of a coiled-coil domain, an NB-ARC domain and 13 imperfect leucine-rich repeats. TaRCR1 was localized in both the cytoplasm and the nucleus. Silencing of TaRCR1 impaired wheat resistance to R. cerealis, whereas TaRCR1 overexpression significantly increased the resistance in transgenic wheat. TaRCR1 regulated certain reactive oxygen species (ROS)-scavenging and production, and defence-related genes, and peroxidase activity. Furthermore, H2 O2 pretreatment for 12-h elevated expression levels of TaRCR1 and the above defence-related genes, whereas treatment with a peroxidase inhibitor for 12 h reduced the resistance of TaRCR1-overexpressing transgenic plants and expression levels of these defence-related genes. Taken together, TaRCR1 positively contributes to defence response to R. cerealis through maintaining ROS homoeostasis and regulating the expression of defence-related genes.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Rhizoctonia/patogenicidade , Triticum/metabolismo , Triticum/microbiologia , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Triticum/genética
11.
Theor Appl Genet ; 130(10): 2057-2068, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653149

RESUMO

KEY MESSAGE: Twenty-five Dasypyrum villosum 6V#4S-specific PCR markers were developed using transcriptome data and further assigned to comparative genomic maps of wheat chromosome 6A, 6B, and 6D and barley chromosome 6H contrasting their homologous genes in these genomes. Two Dasypyrum villosum accessions, D.v#2 and No. 1026 from England and Russia, respectively, contain Pm21 on chromosome 6V#2S and PmV on chromosome 6V#4S. Both genes confer high resistance to powdery mildew (PM) in wheat. Even though several molecular markers have been developed to detect Pm21 and PmV, only the MBH1 marker can simultaneously detect both Pm21 and PmV. In this study, we first used a high-throughput sequencing technique to obtain the transcriptome sequences of a wheat-D. villosum translocation line, Pm97033-which contains chromosome 6V#4S carrying the PmV locus, under wheat PM pathogen induction. Twenty-five 6V#4S chromosome-specific markers were developed. Three of them were able to clearly distinguish chromosomes 6V#4S and 6V#2S by product size, four amplified the product specific for chromosome 6V#4S only, and the remaining 18 markers identified chromosome 6VS in wheat backgrounds. Two different D. villosum accessions, their derived translocation lines and wheat varieties carrying different chromosome 6VS were identified using these specific markers. The 25 newly developed markers together with the known PM resistance gene Stpk-V were used to construct comparative genomic maps with the homoeologous chromosome arms of wheat and barley. The colinearity of the identified gene sequences amplified by the 25 markers among wheat chromosomes 6A, 6B, and 6D and barley chromosome 6H was not very conserved and interrupted frequently by inversion and insertion. Our markers have potential in marker assisted selection for PM resistance breeding, and for locating other potential important genes and cloning the PmV gene on chromosome 6V#4S.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Marcadores Genéticos , Poaceae/genética , Transcriptoma , Hibridização Genômica Comparativa , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Translocação Genética , Triticum/genética
13.
Funct Integr Genomics ; 15(3): 375-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25487419

RESUMO

Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.


Assuntos
Ascomicetos , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Triticum/metabolismo
14.
J Exp Bot ; 66(21): 6591-603, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220083

RESUMO

Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Imunidade Vegetal , Rhizoctonia/fisiologia , Triticum/genética , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas , Análise de Sequência de DNA , Triticum/imunologia , Triticum/microbiologia
15.
Funct Integr Genomics ; 14(2): 341-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24890396

RESUMO

Bread wheat (Triticum aestivum L.) is a major staple crop in the world. Grain weight is a major factor of grain yield in wheat, and the identification of candidate genes associated with grain weight is very important for high-yield breeding of wheat. TaGW2 is an orthologous gene of rice OsGW2 that negatively regulates the grain width and weight in rice. There are three TaGW2 homoeologs in bread wheat, TaGW2A, TaGW2B, and TaGW2D. In this study, a specific TaGW2-RNA interference (RNAi) cassette was constructed and transformed into a Chinese bread wheat variety 'Shi 4185' with small grain. The transcript levels of TaGW2A, TaGW2B, and TaGW2D were simultaneously downregulated in TaGW2-RNAi transgenic wheat lines. Compared with the controls, TaGW2-underexpressing transgenic lines displayed significantly increases in the grain width and weight, suggesting that TaGW2 negatively regulated the grain width and weight in bread wheat. Further transcript analysis showed that in different bread wheat accessions, the transcript abundance of TaGW2A was negatively associated with the grain width.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , RNA Mensageiro/antagonistas & inibidores , RNA de Plantas/antagonistas & inibidores , Sementes/genética , Triticum/genética , Pão , Cruzamento , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência do Ácido Nucleico , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
16.
Plant Biotechnol J ; 12(4): 468-79, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24393105

RESUMO

Salinity and drought are major limiting factors of wheat (Triticum aestivum) productivity worldwide. Here, we report the function of a wheat ERF transcription factor TaERF3 in salt and drought responses and the underlying mechanism of TaERF3 function. Upon treatment with 250 mM NaCl or 20% polyethylene glycol (PEG), transcript levels of TaERF3 were rapidly induced in wheat. Using wheat cultivar Yangmai 12 as the transformation recipient, four TaERF3-overexpressing transgenic lines were generated and functionally characterized. The seedlings of the TaERF3-overexpressing transgenic lines exhibited significantly enhanced tolerance to both salt and drought stresses as compared to untransformed wheat. In the leaves of TaERF3-overexpressing lines, accumulation levels of both proline and chlorophyll were significantly increased, whereas H2O2 content and stomatal conductance were significantly reduced. Conversely, TaERF3-silencing wheat plants that were generated through virus-induced gene silencing method displayed more sensitivity to salt and drought stresses compared with the control plants. Real-time quantitative RT-PCR analyses showed that transcript levels of ten stress-related genes were increased in TaERF3-overexpressing lines, but compromised in TaERF3-silencing wheat plants. Electrophoretic mobility shift assays showed that the TaERF3 protein could interact with the GCC-box cis-element present in the promoters of seven TaERF3-activated stress-related genes. These results indicate that TaERF3 positively regulates wheat adaptation responses to salt and drought stresses through the activation of stress-related genes and that TaERF3 is an attractive engineering target in applied efforts to improve abiotic stress tolerances in wheat and other cereals.


Assuntos
Secas , Proteínas de Plantas/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triticum/fisiologia , Ácido Abscísico/farmacologia , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polietilenoglicóis/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Triticum/efeitos dos fármacos , Triticum/genética
17.
Plant Biotechnol J ; 12(4): 447-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373454

RESUMO

Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV.


Assuntos
Agricultura , RNA Polimerases Dirigidas por DNA/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Potyviridae/genética , RNA Antissenso/genética , Triticum/virologia , Segregação de Cromossomos , Cruzamentos Genéticos , Genes Virais , Resistência a Herbicidas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/metabolismo , Transgenes , Triticum/genética , Triticum/imunologia
18.
Funct Integr Genomics ; 13(3): 403-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23839728

RESUMO

Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T0 to T4 progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.


Assuntos
Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Triticum/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
19.
Funct Integr Genomics ; 12(3): 481-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689341

RESUMO

The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.


Assuntos
Antígenos de Plantas/genética , Ascomicetos/patogenicidade , Proteínas de Transporte/genética , Resistência à Doença , Fusarium/patogenicidade , Proteínas de Plantas/genética , Triticum/imunologia , Antígenos de Plantas/metabolismo , Ascomicetos/imunologia , Proteínas de Transporte/metabolismo , Clonagem Molecular , Fusarium/imunologia , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genoma de Planta , Padrões de Herança , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transgenes , Triticum/genética , Triticum/metabolismo
20.
Plant Cell Rep ; 31(12): 2229-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22911265

RESUMO

KEY MESSAGE: Seven kinds of transgenic tobacco plants transformed with combinations of three FBE genes were obtained. The transgenic plants transformed with Ta1-SST + Ta6-SFT genes appeared to have the highest fructan or soluble sugar content and the strongest salt tolerance. Fructan is thought to be one of the important regulators involved in plant tolerance to various abiotic stresses. In this study, wheat-derived genes, Ta1-SST, Ta6-SFT, and Ta1-FFT, encoding fructan biosynthesis enzymes (FBE) were isolated and cloned into vectors modified pBI121 or pZP211. Seven different combinations of the three target genes were transformed into tobacco plants through an Agrobacterium-mediated approach, and transgenic tobacco plants were identified by PCR, ELISA, and Southern blotting. Compared with tobacco plants transformed with other six combinations of the three target genes and with wild-type plants, the transgenic plants transformed with Ta1-SST + Ta6-SFT genes contained the highest fructan and soluble sugar content. All seven types of transgenic tobacco plants displayed a much higher level of tolerance to drought, low temperature, and high salinity compared with the wild type. Differences of drought and low temperature tolerance between the transgenic plants containing a single FBE gene and those harboring two or three FBE genes were not significant, but the salt tolerance level of the transgenic plants with different FBE gene combinations from high to low was: Ta1-SST + Ta6-SFT > Ta1-SST + Ta6-SFT + Ta1-FFT > Ta1-SST + Ta1-FFT > Ta1-SFT + Ta1-FFT > single FBE gene. These results indicated that the tolerances of the transgenic tobacco plants to various abiotic stresses were associated with the transformed target gene combinations and the contents of fructan and soluble sugar contained in the transgenic plants.


Assuntos
Frutanos/biossíntese , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/metabolismo , Transformação Genética , Triticum/genética , Adaptação Fisiológica , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Southern Blotting , Clonagem Molecular , Temperatura Baixa , Secas , Ensaio de Imunoadsorção Enzimática , Frutanos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Cloreto de Sódio/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Triticum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA