Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092149

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.


Assuntos
Proteínas de Choque Térmico HSP90 , Replicação Viral , Animais , Humanos , Deltacoronavirus , Especificidade de Hospedeiro , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Suínos , Células HEK293
2.
J Virol ; 98(5): e0195923, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38634598

RESUMO

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Ácidos Siálicos , Ligação Viral , Animais , Camundongos , Linhagem Celular , Culex/virologia , Culex/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Mosquitos Vetores/virologia , Neuraminidase/metabolismo , Neuraminidase/genética , Ácidos Siálicos/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus
3.
FASEB J ; 37(5): e22898, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022664

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which leads to insulin resistance, steatosis, and even hepatocellular carcinoma, is the most common chronic liver disease worldwide, however, effective treatment is still lacking. This study determined the role of liver FGF21 and the mechanisms underlying the protective effects of time-restricted feeding (TRF) in NAFLD. FGF21 liver knockout (FGF21 LKO) mice and C57BL/6 wild-type (WT) mice were fed either a normal or a high-fat diet (HFD) for 16 weeks. Mice with diet-induced obesity (DIO) were also used. The mice were fed either ad libitum or in a time-restricted manner. Serum FGF21 levels were significantly increased after 16 weeks of TRF. TRF prevented body weight gain, improved glucose homeostasis, and protected against high-fat diet-induced hepatosteatosis and liver damage. The expression of genes related to liver lipogenesis and inflammation was reduced in TRF mice, but the expression of genes involved in fatty acid ß-oxidation was increased. However, those beneficial effects of TRF were blunted in the FGF21 LKO mice. Moreover, TRF promoted improvements in insulin sensitivity and liver damage in DIO mice. Our data show that liver FGF21 signaling was involved in the effect of TRF on high-fat diet-induced fatty liver.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791369

RESUMO

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Assuntos
Toxinas Bacterianas , Interleucina-8 , Infecções por Pasteurella , Pasteurella multocida , Animais , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Caspase 8/metabolismo , Caspase 8/genética , Linhagem Celular , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Suínos , Infecções por Pasteurella/metabolismo , Infecções por Pasteurella/veterinária
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674155

RESUMO

Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.


Assuntos
Haemophilus parasuis , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Haemophilus parasuis/patogenicidade , Haemophilus parasuis/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Linhagem Celular , Suínos
6.
Infect Immun ; 91(12): e0035123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930004

RESUMO

Virulent Glaesserella parasuis may engender systemic infection characterized by fibrinous polyserositis and pneumonia. G. parasuis causes systemic disease through upper respiratory tract infection, but the mechanism has not been fully characterized. Tight junction (TJ) proteins maintain the integrity and impermeability of the epithelial barriers. In this work, we applied the recombinant cytolethal distending toxin (CDT) holotoxin and cdt-deficient mutants to assess whether CDT interacted with TJ proteins of airway tract cells. Our results indicated that CDT induced the TJ occludin (OCLN) expression in newborn pig tracheal epithelial cells within the first 3 hours of bacterial infection, followed by a significant decrease. Overexpression of OCLN in target cells made them more susceptible to G. parasuis adhesion, whereas ablation of OCLN expression by CRISPR/Cas 9 gene editing technology in target cells decreased their susceptibility to bacterial adhesion. In addition, CDT treatment could upregulate the OCLN levels in the lung tissue of C57/BL6 mice. In summary, highly virulent G. parasuis strain SC1401 stimulated the tight junction expression, resulting in higher bacterial adhesion to respiratory tract cells, and this process is closely related to CDT. Our results may provide novel insights into G. parasuis infection and CDT-mediated pathogenesis.


Assuntos
Aderência Bacteriana , Infecções por Haemophilus , Haemophilus parasuis , Pulmão , Ocludina , Animais , Camundongos , Células Epiteliais/microbiologia , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Ocludina/genética , Ocludina/metabolismo , Suínos , Regulação para Cima , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Camundongos Endogâmicos C57BL
7.
Nature ; 545(7655): 482-486, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514450

RESUMO

Zika virus (ZIKV) remained obscure until the recent explosive outbreaks in French Polynesia (2013-2014) and South America (2015-2016). Phylogenetic studies have shown that ZIKV has evolved into African and Asian lineages. The Asian lineage of ZIKV was responsible for the recent epidemics in the Americas. However, the underlying mechanisms through which ZIKV rapidly and explosively spread from Asia to the Americas are unclear. Non-structural protein 1 (NS1) facilitates flavivirus acquisition by mosquitoes from an infected mammalian host and subsequently enhances viral prevalence in mosquitoes. Here we show that NS1 antigenaemia determines ZIKV infectivity in its mosquito vector Aedes aegypti, which acquires ZIKV via a blood meal. Clinical isolates from the most recent outbreak in the Americas were much more infectious in mosquitoes than the FSS13025 strain, which was isolated in Cambodia in 2010. Further analyses showed that these epidemic strains have higher NS1 antigenaemia than the FSS13025 strain because of an alanine-to-valine amino acid substitution at residue 188 in NS1. ZIKV infectivity was enhanced by this amino acid substitution in the ZIKV FSS13025 strain in mosquitoes that acquired ZIKV from a viraemic C57BL/6 mouse deficient in type I and II interferon (IFN) receptors (AG6 mouse). Our results reveal that ZIKV evolved to acquire a spontaneous mutation in its NS1 protein, resulting in increased NS1 antigenaemia. Enhancement of NS1 antigenaemia in infected hosts promotes ZIKV infectivity and prevalence in mosquitoes, which could have facilitated transmission during recent ZIKV epidemics.


Assuntos
Aedes/virologia , Evolução Biológica , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/patogenicidade , América/epidemiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ásia/epidemiologia , Camboja/epidemiologia , Feminino , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/isolamento & purificação , Zika virus/metabolismo , Infecção por Zika virus/epidemiologia
8.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958953

RESUMO

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Suínos , Animais , Vírus da Gastroenterite Transmissível/genética , Gastroenterite Suína Transmissível/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/farmacologia , Citocinas/genética , Citocinas/farmacologia , Interleucina-12/farmacologia
9.
Int J Mol Sci ; 24(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239984

RESUMO

Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.


Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Animais , Camundongos , Suínos , Proteína Estafilocócica A , Peptídeos , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos
10.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328701

RESUMO

PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.


Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Imunidade/genética , Doenças dos Suínos/etiologia , Transcriptoma , Animais , Biologia Computacional/métodos , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , NF-kappa B/metabolismo , Suínos
11.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077023

RESUMO

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Assuntos
Haemophilus parasuis , Proteínas Periplásmicas de Ligação , Animais , Citocinas/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Viruses ; 15(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37112954

RESUMO

As a zoonotic virus, Japanese Encephalitis virus (JEV) poses a serious threat to human health and the breeding industry. Regarding the mechanism and complications of tissue inflammation caused by JEV, such as encephalitis and orchitis, there is no effective drug treatment currently, and the mechanism of occurrence has not been thoroughly studied. Therefore, it is necessary to study the mechanism of the inflammatory pathway caused by JEV. As one of the key proteins regulating cell death, BCL2 antagonist/killer (BAK) is also a necessary prerequisite for the release of cellular inflammatory factors. We found that after JEV infection, BAK-knockdown cells died less than normal cells, and the transcription levels of inflammatory factors such as TNF, IFNα, and IL-1ß and their corresponding regulatory genes were also significantly reduced. By further verifying protein expression on the cell death pathway, it was found that pyroptotic activation and virus titer were also significantly reduced in BAK.KD cells, suggesting that JEV proliferation might be related to BAK-induced cell death. From our data, we could conclude that JEV utilized the BAK-promoted pyroptotic pathway to release more virions after the final Gasdermin D-N (GSDMD-N) protein pore formation for the purpose of JEV proliferation. Therefore, the study of the endogenous cell death activator protein BAK and the final release pathway of JEV, is expected to provide some new theoretical basis for future research on the screening of targeted drugs for the treatment of inflammatory diseases caused by JEV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Animais , Humanos , Masculino , Proliferação de Células , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Piroptose , Suínos , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
13.
Microbiol Spectr ; 11(6): e0255323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962380

RESUMO

IMPORTANCE: Porcine deltacoronavirus (PDCoV) is a newly emerged enteric virus threatening pig industries worldwide. Our previous work showed that PDCoV enters porcine kidney (PK-15) cells through a caveolae-dependent pathway, but the entry mechanism for PDCoV into swine testicle (ST) cells remains unclear. Mechanisms of virus entry can be different with different virus isolates and cell types. Here, we determined that PDCoV enters ST cells via clathrin-mediated endocytosis. Additionally, we found that PDCoV entry does not require Rab5, Rab7, or Rab11. These findings provide additional understanding of the entry mechanisms of PDCoV and possible antiviral targets.


Assuntos
Infecções por Coronavirus , Doenças dos Suínos , Animais , Suínos , Endocitose , Deltacoronavirus/metabolismo , Internalização do Vírus , Clatrina/metabolismo , Infecções por Coronavirus/veterinária
14.
Vaccine ; 41(14): 2387-2396, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36872144

RESUMO

Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Suínos , Pasteurella multocida/genética , Epitopos de Linfócito B/genética , Proteínas de Bactérias/genética , Infecções por Pasteurella/prevenção & controle , Vacinação , Imunização
15.
Virus Res ; 335: 199185, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532142

RESUMO

Enterovirus G belongs to the family Picornaviridae and are associated with a variety of animal diseases. We isolated and characterized a novel EV-G2 strain, CHN-SCMY2021, the first genotype 2 strain isolated in China. CHN-SCMY2021 is about 25 nm diameter with morphology typical of picornaviruses and its genome is 7341 nucleotides. Sequence alignment and phylogenetic analysis based on VP1 indicated that this isolate is a genotype 2 strain. The whole genome similarity between CHN-SCMY2021 and other EV-G genotype 2 strains is 78.3-86.4%, the greatest similarity is to EVG/Porcine/JPN/Iba26-506/2014/G2 (LC316792.1). Recombination analysis indicated that CHN-SCMY2021 resulted from recombination between 714,171/CaoLanh_VN (KT265894.2) and LP 54 (AF363455.1). Except for ST cells, CHN-SCMY2021 has a broad spectrum of cellular adaptations, which are susceptible to BHK-21, PK-15, IPEC-J2, LLC-PK and Vero cells. In piglets, CHN-SCMY2021 causes mild diarrhea and thinning of the intestinal wall. The virus was mainly distributed to intestinal tissue but was also found in heart, liver, spleen, lung, kidney, brain, and spinal cord. CHN-SCMY2021 is the first systematically characterized EV-G genotype 2 strain from China, our results enrich the information on the epidemiology, molecular evolution and pathogenicity associated with EV-G.


Assuntos
Enterovirus Suínos , Animais , Suínos , Enterovirus Suínos/classificação , Enterovirus Suínos/genética , Enterovirus Suínos/patogenicidade , Filogenia , Genoma Viral , Recombinação Genética , Células Vero , Chlorocebus aethiops , Diarreia/veterinária , Diarreia/virologia , Intestinos/patologia , Intestinos/virologia
16.
Int J Biol Macromol ; 251: 126327, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579907

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that mainly threatens newborn piglets and poses a potential broad cross-species transmission risk. The antigenic epitopes of PDCoV are currently unidentified, and no information about T cell epitopes is available. Here, T-cell epitopes of PDCoV structural proteins were predicted using computational methods. 17 epitope peptides were synthesized and then screened using ELIspot, intracellular cytokine staining (ICS), and RT-qPCR detection of IFN-γ mRNA to evaluate their ability to elicit interferon-gamma (IFN-γ) responses in peripheral blood mononuclear cells (PBMCs) from PDCoV-challenged pigs. Five peptides (M1, M2, M3, N6, and S4) elicited high levels of IFN-γ and were investigated further as potential T-cell epitope candidates. All five peptides were cytotoxic T lymphocyte (CTL) epitopes, and two peptides (M3, N6) were recognized simultaneously by CD8 + and CD4 + T cells. A multi-epitope peptide combining the five epitopes (designated "5T") was synthesized and its immune response and protection efficacy was evaluated in a piglet model. ELISpot assay results indicated that 5T induces robust epitope-specific cellular immune responses. Four epitopes (M1, M2, N6, S4) elicited IFN-γ responses in 5T-vaccinated piglets. No obvious protection efficacy was detected in piglets vaccinated with 5T alone. Our results provide valuable information concerning PDCoV-related antigenic epitopes and will be useful in the design of epitope-based vaccines.

17.
Int J Biol Macromol ; 242(Pt 4): 125190, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276902

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 µg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.


Assuntos
Epitopos de Linfócito B , Epitopos Imunodominantes , Animais , Suínos , Camundongos , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes
18.
Vet Microbiol ; 287: 109913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006719

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus that is spread through mosquito bites and is the leading cause of viral encephalitis in Asia. JEV can infect a variety of cell types; however, crucial receptor molecules remain unclear. The purpose of this study was to determine whether porcine CD4 protein is a receptor protein that impacts JEV entry into PK15 cells and subsequent viral replication. We confirmed the interaction between the JEV E protein and the CD4 protein through Co-IP, virus binding and internalization, antibody blocking, and overexpression and created a PK-15 cell line with CD4 gene knockdown by CRISPR/Cas9. The results show that CD4 interacts with JEV E and that CD4 knockdown cells altered virus adsorption and internalization, drastically reducing virus attachment. The level of viral transcription in CD4 antibody-blocked cells, vs. control cells, was decreased by 49.1%. Based on these results, we believe that CD4 is a receptor protein for JEVs. Furthermore, most viral receptors appear to be associated with lipid rafts, and colocalization studies demonstrate the presence of CD4 protein on lipid rafts. RT‒qPCR and WB results show that virus replication was suppressed in PK-15-CD4KD cells. The difference in viral titer between KD and WT PK-15 cells peaked at 24 h, and the viral titer in WT PK-15 cells was 5.6 × 106, whereas in PK-15-CD4KD cells, it was only 1.8 × 106, a 64% drop, demonstrating that CD4 deficiency has an effect on the process of viral replication. These findings suggest that JEV enters porcine kidney cells via lipid raft-colocalized CD4, and the proliferation process is positively correlated with CD4.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Receptores Virais , Doenças dos Suínos , Animais , Ásia , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/metabolismo , Encefalite Japonesa/veterinária , Encefalite Japonesa/virologia , Receptores Virais/metabolismo , Suínos , Doenças dos Suínos/virologia , Ligação Viral , Replicação Viral
19.
iScience ; 26(8): 107450, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37583552

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.

20.
Front Microbiol ; 14: 1087484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819040

RESUMO

Introduction: Pseudorabies virus (PRV) is the pathogenic virus of porcine pseudorabies (PR), belonging to the Herpesviridae family. PRV has a wide range of hosts and in recent years has also been reported to infect humans. N6-methyladenosine (m6A) modification is the major pathway of RNA post-transcriptional modification. Whether m6A modification participates in the regulation of PRV replication is unknown. Methods: Here, we investigated that the m6A modification was abundant in the PRV transcripts and PRV infection affected the epitranscriptome of host cells. Knockdown of cellular m6A methyltransferases METTL3 and METTL14 and the specific binding proteins YTHDF2 and YTHDF3 inhibited PRV replication, while silencing of demethylase ALKBH5 promoted PRV output. The overexpression of METTL14 induced more efficient virus proliferation in PRV-infected PK15 cells. Inhibition of m6A modification by 3-deazaadenosine (3-DAA), a m6A modification inhibitor, could significantly reduce viral replication. Results and Discussion: Taken together, m6A modification played a positive role in the regulation of PRV replication and gene expression. Our research revealed m6A modification sites in PRV transcripts and determined that m6A modification dynamically mediated the interaction between PRV and host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA