Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38629603

RESUMO

The extreme ultraviolet (EUV) nanolithography technology is the keystone for developing the next-generation chips. As conventional chemically amplified resists are approaching the resolution limit, metal-containing photoresists, especially tin-oxo clusters, seize the opportunity to embrace this challenge owing to their small sizes, precise atomic structures, and strong EUV absorption. However, atomistic insights into the mechanism for regulating their photolithographic behavior are lacking. Herein, we systematically explored the effects of ligands, counterions, and endohedral doping on the photophysical properties of tin-oxo cage clusters by first-principles calculations combined with molecular dynamics simulations. Photoresists assembled by allyl-protected clusters with small-size OH- or Cl- counterions have a high absorption coefficient at the EUV wavelength of 13.5 nm and a low energy cost for ligand detachment and superior stability to ensure high sensitivity and strong etch resistance, respectively. The photoresist performance can further be improved by endohedral doping of the metal-oxo nanocage with Ag+ and Cd2+ ions, which exhibit superatomic characteristics and are likely to be synthesized in laboratory. These theoretical results provide useful guidance for modification of metal-oxo clusters for high-resolution EUV photolithography.

2.
J Phys Chem Lett ; 15(12): 3249-3257, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488567

RESUMO

Introduction of chirality to colloidal semiconductor quantum dots (QDs) triggers a chiroptical effect. However, there remains a knowledge gap in the mechanism of chirality transfer and amplification from molecules to QDs. By time-dependent density functional theory calculations combined with a correlated electron-hole picture, we explored the chiroptical activity of CdSe QDs decorated with different chiral monocarboxylic acids from an excitonic perspective. Our calculations showed strong circular dichroism (CD) signals in the visible region for the chiral CdSe QDs. The excitonic states with large CD originate from QDs, while the chiral molecules break the orthogonality between electric and magnetic transition dipoles, which synergistically facilitates the prominent dissymmetric effect. The considered monocarboxylic acid chiral molecules all favor the bidentate adsorption configuration of the carboxyl group on the CdSe surface, endowing an identical CD signature but distinct excitonic characteristics. These findings are crucial for the regulation of chirality and excitons in semiconductor QDs to develop excitonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA