Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632529

RESUMO

BACKGROUND: Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. RESULTS: Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. CONCLUSION: This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.


Assuntos
Brassica , Brassica/genética , Filogenia , Cádmio/metabolismo , Família Multigênica , Genômica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Genoma de Planta
2.
Physiol Plant ; 176(4): e14423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945803

RESUMO

Maize (Zea mays L.) is an important food crop with a wide range of uses in both industry and agriculture. Drought stress during its growth cycle can greatly reduce maize crop yield and quality. However, the molecular mechanisms underlying maize responses to drought stress remain unclear. In this work, a WRKY transcription factor-encoding gene, ZmWRKY30, from drought-treated maize leaves was screened out and characterized. ZmWRKY30 gene expression was induced by dehydration treatments. The ZmWRKY30 protein localized to the nucleus and displayed transactivation activity in yeast. Compared with wild-type (WT) plants, Arabidopsis lines overexpressing ZmWRKY30 exhibited a significantly enhanced drought stress tolerance, as evidenced by the improved survival rate, increased antioxidant enzyme activity by superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), elevated proline content, and reduced lipid peroxidation recorded after drought stress treatment. In contrast, the mutator (Mu)-interrupted ZmWRKY30 homozygous mutant (zmwrky30) was more sensitive to drought stress than its null segregant (NS), characterized by the decreased survival rate, reduced antioxidant enzyme activity (SOD, POD, and CAT) and proline content, as well as increased malondialdehyde accumulation. RNA-Seq analysis further revealed that, under drought conditions, the knockout of the ZmWRKY30 gene in maize affected the expression of genes involved in reactive oxygen species (ROS), proline, and myo-inositol metabolism. Meanwhile, the zmwrky30 mutant exhibited significant downregulation of myo-inositol content in leaves under drought stress. Combined, our results suggest that ZmWRKY30 positively regulates maize responses to water scarcity. This work provides potential target genes for the breeding of drought-tolerant maize.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Homeostase , Inositol , Proteínas de Plantas , Espécies Reativas de Oxigênio , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inositol/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Resistência à Seca
3.
Plant Cell Rep ; 43(2): 44, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246890

RESUMO

KEY MESSAGE: ZmWRKY64 positively regulates Arabidopsis and maize Cd stress through modulating Cd uptake, translocation, and ROS scavenging genes expression. Cadmium (Cd) is a highly toxic heavy metal with severe impacts on crops growth and development. The WRKY transcription factor is a significant regulator influencing plant stress response. Nevertheless, the function of the WRKY protein in maize Cd stress response remains unclear. Here, we identified a maize WRKY gene, ZmWRKY64, the expression of which was enhanced in maize roots and leaves under Cd stress. ZmWRKY64 was localized in the nucleus and displayed transcriptional activity in yeast. Heterologous expression of ZmWRKY64 in Arabidopsis diminished Cd accumulation in plants by negatively regulating the expression of AtIRT1, AtZIP1, AtHMA2, AtNRAMP3, and AtNRAMP4, which are involved in Cd uptake and transport, resulting in Cd stress tolerance. Knockdown of ZmWRKY64 in maize led to excessive Cd accumulation in leaf cells and in the cytosol of the root cells, resulting in a Cd hypersensitive phenotype. Further analysis confirmed that ZmWRKY64 positively regulated ZmABCC4, ZmHMA3, ZmNRAMP5, ZmPIN2, ZmABCG51, ZmABCB13/32, and ZmABCB10, which may influence Cd translocation and auxin transport, thus mitigating Cd toxicity in maize. Moreover, ZmWRKY64 could directly enhance the transcription of ZmSRG7, a reported key gene regulating reactive oxygen species homeostasis under abiotic stress. Our results indicate that ZmWRKY64 is important in maize Cd stress response. This work provides new insights into the WRKY transcription factor regulatory mechanism under a Cd-polluted environment and may lead to the genetic improvement of Cd tolerance in maize.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Cádmio/toxicidade , Zea mays/genética , Arabidopsis/genética , Regulação da Expressão Gênica
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279259

RESUMO

With the constant progress of urbanization and industrialization, cadmium (Cd) has emerged as one of the heavy metals that pollute soil and water. The presence of Cd has a substantial negative impact on the growth and development of both animals and plants. The allotetraploid Brasscia. carinata, an oil crop in the biofuel industry, is known to produce seeds with a high percentage of erucic acid; it is also known for its disease resistance and widespread adaptability. However, there is limited knowledge regarding the tolerance of B. carinata to Cd and its physiological responses and gene expressions under exposure to Cd. Here, we observed that the tested B. carinata exhibited a strong tolerance to Cd (1 mmol/L CdCl2 solution) and exhibited a significant ability to accumulate Cd, particularly in its roots, with concentrations reaching up to 3000 mg/kg. Additionally, we found that the total oil content of B. carinata seeds harvested from the Cd-contaminated soil did not show a significant change, but there were noticeable alterations in certain constituents. The activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were observed to significantly increase after treatment with different concentrations of CdCl2 solutions (0.25 mmol/L, 0.5 mmol/L, and 1 mmol/L CdCl2). This suggests that these antioxidant enzymes work together to enhance Cd tolerance. Comparative transcriptome analysis was conducted to identify differentially expressed genes (DEGs) in the shoots and roots of B. carinata when exposed to a 0.25 mmol/L CdCl2 solution for 7 days. A total of 631 DEGs were found in the shoots, while 271 DEGs were found in the roots. It was observed that these selected DEGs, which responded to Cd stress, also showed differential expression after exposure to PbCl2. This suggests that B. carinata may employ a similar molecular mechanism when tolerating these heavy metals. The functional annotation of the DEGs showed enrichment in the categories of 'inorganic ion transport and metabolism' and 'signal transduction mechanisms'. Additionally, the DEGs involved in 'tryptophan metabolism' and 'zeatin biosynthesis' pathways were found to be upregulated in both the shoots and roots of B. carinata, suggesting that the plant can enhance its tolerance to Cd by promoting the biosynthesis of plant hormones. These results highlight the strong Cd tolerance of B. carinata and its potential use as a Cd accumulator. Overall, our study provides valuable insights into the mechanisms underlying heavy metal tolerance in B. carinata.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Antioxidantes/metabolismo , Brassica/metabolismo , Metais Pesados/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Solo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
5.
Theor Appl Genet ; 136(7): 153, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310523

RESUMO

KEY MESSAGE: Cadmium-induced TaWAK20 regulates the cadmium stress response by phosphorylating TaSPL5 in wheat. Receptor-like kinases (RLKs) are thought to play important roles in responses to abiotic stresses in plants. In this study, we identified a cadmium (Cd)-induced RLK in wheat, TaWAK20, which is a positive regulator of the Cd stress response. TaWAK20 is specifically expressed in root tissue. Overexpression of TaWAK20 significantly improved the tolerance of Cd stress in wheat and decreased Cd accumulation in wheat plants by regulating reactive oxygen species production and scavenging. Yeast one-hybrid assays, electrophoretic mobility shift assays, and firefly luciferase activity analyses demonstrated that the TaWAK20 promoter was bound by the TabHLH35 transcription factor. TaWAK20 interacted with and phosphorylated squamosa promoter binding protein-like 5 (TaSPL5). Furthermore, phosphorylation of TaSPL5 increased its DNA-binding activity. In addition, Arabidopsis-expressing phosphorylated TaSPL5 exhibited greater Cd tolerance than Arabidopsis-expressing unphosphorylated TaSPL5. Taken together, these data identify a TabHLH35-TaWAK20-TaSPL5 module that regulates Cd stress.


Assuntos
Arabidopsis , Triticum , Triticum/genética , Cádmio/toxicidade , Arabidopsis/genética , Fosforilação , Regiões Promotoras Genéticas
6.
Mol Breed ; 43(7): 57, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457120

RESUMO

In wheat, TaMYC8 is a negative regulator of cadmium (Cd)-responsive ethylene signaling. In this study, we functionally characterized TabHLH094, a basic helix-loop-helix (bHLH) transcription factor (TF) that inhibits the transcriptional activity of TaMYC8. The TabHLH094 protein was found in the nucleus of tobacco epidermal cells and exhibited transcriptional activation activity. Real-time quantitative PCR (RT-qPCR) indicated that TabHLH094 exhibited root-specific, Cd-responsive expression in wheat seedlings. Overexpression of TabHLH094 enhanced the tolerance of wheat seedlings to Cd exposure. The protein-protein interaction between TabHLH094 and TaMYC8 was verified by glutathione S-transferase (GST) pulldown, coimmunoprecipitation (Co-IP), yeast two-hybrid (Y2H), and bimolecular fluorescence complementation (BiFC) analyses. TabHLH094 was found to reduce the ability of TaMYC8 to bind to the TaERF6 promoter. Furthermore, TabHLH094 could also reduce aminocyclopropanecarboxylate oxidase (ACO) and ACC synthase (ACS) activities, both of which are necessary for ethylene biosynthesis. Taken together, these results indicate that TabHLH094 mediates Cd tolerance by regulating the transcriptional activity of TaMYC8 and decreasing ethylene production. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01404-1.

7.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685867

RESUMO

In plants, expansin genes are responsive to heavy metal exposure. To study the bioremediary potential of this important gene family, we discovered a root-expressed expansin gene in sorghum, SbEXPA11, which is notably upregulated following cadmium (Cd) exposure. However, the mechanism underlying the Cd detoxification and accumulation mediated by SbEXPA11 in sorghum remains unclear. We overexpressed SbEXPA11 in sorghum and compared wild-type (WT) and SbEXPA11-overexpressing transgenic sorghum in terms of Cd accumulation and physiological indices following Cd. Compared with the WT, we found that SbEXPA11 mediates Cd tolerance by exerting reactive oxygen species (ROS)-scavenging effects through upregulating the expression of antioxidant enzymes. Moreover, the overexpression of SbEXPA11 rescued biomass production by increasing the photosynthetic efficiency of transgenic plants. In the pot experiment with a dosage of 10 mg/kg Cd, transgenic sorghum plants demonstrated higher efficacy in reducing the Cd content of the soil (8.62 mg/kg) compared to WT sorghum plants (9.51 mg/kg). Subsequent analysis revealed that the SbbHLH041 transcription factor has the ability to induce SbEXPA11 expression through interacting with the E-box located within the SbEXPA11 promoter. These findings suggest that the SbbHLH041-SbEXPA11 cascade module may be beneficial for the development of phytoremediary sorghum varieties.


Assuntos
Biodegradação Ambiental , Cádmio , Sorghum , Antioxidantes , Biomassa , Cádmio/metabolismo , Cádmio/toxicidade , Grão Comestível , Plantas Geneticamente Modificadas/genética , Sorghum/genética , Sorghum/metabolismo
8.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834181

RESUMO

Maize is often subjected to various environmental stresses. The strictosidine synthase-like (SSL) family is thought to catalyze the key step in the monoterpene alkaloids synthesis pathway in response to environmental stresses. However, the role of ZmSSL genes in maize growth and development and its response to stresses is unknown. Herein, we undertook the systematic identification and analysis of maize SSL genes. Twenty SSL genes were identified in the maize genome. Except for chromosomes 3, 5, 6, and 10, they were unevenly distributed on the remaining 6 chromosomes. A total of 105 SSL genes from maize, sorghum, rice, Aegilops tauschii, and Arabidopsis were divided into five evolutionary groups, and ZmSSL gene structures and conserved protein motifs in the same group were similar. A collinearity analysis showed that tandem duplication plays an important role in the evolution of the SSL family in maize, and ZmSSL genes share more collinear genes in crops (maize, sorghum, rice, and Ae. tauschii) than in Arabidopsis. Cis-element analysis in the ZmSSL gene promoter region revealed that most genes contained many development and stress response elements. We evaluated the expression levels of ZmSSL genes under normal conditions and stress treatments. ZmSSL4-9 were widely expressed in different tissues and were positively or negatively regulated by heat, cold, and infection stress from Colletotrichum graminicola and Cercospora zeina. Moreover, ZmSSL4 and ZmSSL5 were localized in the chloroplast. Taken together, we provide insight into the evolutionary relationships of the ZmSSL genes, which would be useful to further identify the potential functions of ZmSSLs in maize.


Assuntos
Arabidopsis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regiões Promotoras Genéticas , Motivos de Aminoácidos , Família Multigênica , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
9.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069156

RESUMO

Soil salinization, an intractable problem, is becoming increasingly serious and threatening fragile natural ecosystems and even the security of human food supplies. Sorghum (Sorghum bicolor L.) is one of the main crops growing in salinized soil. However, the tolerance mechanisms of sorghum to saline-alkaline soil are still ambiguous. In this study, RNA sequencing was carried out to explore the gene expression profiles of sorghum treated with sodium bicarbonate (150 mM, pH = 8.0, treated for 0, 6, 12 and 24 h). The results show that 6045, 5122, 6804, 7978, 8080 and 12,899 differentially expressed genes (DEGs) were detected in shoots and roots after 6, 12 and 24 h treatments, respectively. GO, KEGG and weighted gene co-expression analyses indicate that the DEGs generated by saline-alkaline stress were primarily enriched in plant hormone signal transduction, the MAPK signaling pathway, starch and sucrose metabolism, glutathione metabolism and phenylpropanoid biosynthesis. Key pathway and hub genes (TPP1, WRKY61, YSL1 and NHX7) are mainly related to intracellular ion transport and lignin synthesis. The molecular and physiological regulation processes of saline-alkali-tolerant sorghum are shown by these results, which also provide useful knowledge for improving sorghum yield and quality under saline-alkaline conditions.


Assuntos
Sorghum , Transcriptoma , Humanos , Sorghum/genética , Ecossistema , Perfilação da Expressão Gênica , Solo/química , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
10.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894733

RESUMO

Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure. This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata. Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both aboveground and underground. Under Cd stress, the expression of genes related to the absorption and transport of heavy metals underwent different changes in parallel, which were involved in the accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition, the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress and regulating plant hormones, which provides a basis for understanding the molecular mechanism of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated areas.


Assuntos
Arabidopsis , Arabis , Metais Pesados , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo
11.
BMC Genomics ; 23(1): 778, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443662

RESUMO

Cadmium (Cd) is a highly toxic pollutant in soil and water that severely hampers the growth and reproduction of plants. Phytoremediation has been presented as a cost-effective and eco-friendly method for addressing heavy metal pollution. However, phytoremediation is restricted by the limited number of accumulators and the unknown mechanisms underlying heavy metal tolerance. In this study, we demonstrated that Erigeron canadensis (Asteraceae), with its strong adaptability, is tolerant to intense Cd stress (2 mmol/L CdCl2 solution). Moreover, E. canadensis exhibited a strong ability to accumulate Cd2+ when treated with CdCl2 solution. The activity of some antioxidant enzymes, as well as the malondialdehyde (MDA) level, was significantly increased when E. canadensis was treated with different CdCl2 solutions (0.5, 1, 2 mmol/L CdCl2). We found high levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities under 1 mmol/L CdCl2 treatment. Comparative transcriptomic analysis identified 5,284 differentially expressed genes (DEGs) in the roots and 3,815 DEGs in the shoots after E. canadensis plants were exposed to 0.5 mM Cd. Functional annotation of key DEGs indicated that signal transduction, hormone response, and reactive oxygen species (ROS) metabolism responded significantly to Cd. In particular, the DEGs involved in auxin (IAA) and ethylene (ETH) signal transduction were overrepresented in shoots, indicating that these genes are mainly involved in regulating plant growth and thus likely responsible for the Cd tolerance. Overall, these results not only determined that E. canadensis can be used as a potential accumulator of Cd but also provided some clues regarding the mechanisms underlying heavy metal tolerance.


Assuntos
Asteraceae , Erigeron , Cádmio/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Antioxidantes
12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142291

RESUMO

Cadmium (Cd) is a heavy metal nonessential for plants; this toxic metal accumulation in crops has significant adverse effects on human health. The crosstalk between copper (Cu) and Cd has been reported; however, the molecular mechanisms remain unknown. The present study investigated the function of wheat Cu transporter 3D (TaCOPT3D) in Cd tolerance. The TaCOPT3D transcripts significantly accumulated in wheat roots under Cd stress. Furthermore, TaCOPT3D-overexpressing lines were compared to wildtype (WT) plants to test the role of TaCOPT3D in Cd stress response. Under 20 mM Cd treatment, TaCOPT3D-overexpressing lines exhibited more biomass and lower root, shoot, and grain Cd accumulation than the WT plants. In addition, overexpression of TaCOPT3D decreased the reactive oxygen species (ROS) levels and increased the active antioxidant enzymes under Cd conditions. Moreover, the transcription factor (TF) TaWRKY22, which targeted the TaCOPT3D promoter, was identified in the regulatory pathway of TaCOPT3D under Cd stress. Taken together, these results show that TaCOPT3D plays an important role in regulating plant adaptation to cadmium stress through bound by TaWRKY22. These findings suggest that TaCOPT3D is a potential candidate for decreasing Cd accumulation in wheat through genetic engineering.


Assuntos
Cádmio , Triticum , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cobre/metabolismo , Humanos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
13.
Physiol Mol Biol Plants ; 28(4): 775-789, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592481

RESUMO

Arabis paniculata Franch (Brassicaceae) has been widely used for the phytoremediation of heavy mental, owing to its hyper tolerance of extreme Pb, Zn, and Cd concentrations. However, studies on its genome or plastid genome are scarce. In the present study, we obtained the complete chloroplast (cp) genome of A. paniculata via de novo assembly through the integration of Illumina reads and PacBio subreads. The cp genome presents a typical quadripartite cycle with a length of 153,541 bp, and contains 111 unigenes, with 79 protein-coding genes, 28 tRNAs and 4 rRNAs. Codon usage analysis showed that the codons for leucine were the most frequent codons and preferentially ended with A/U. Synonymous (Ks) and non-synonymous (Ka) substitution rate analysis indicated that the unigenes, ndhF and rpoC2, related to "NADH-dehydrogenase" and "RNA polymerase" respectively, underwent the lowest purifying selection pressure. Phylogenetic analysis demonstrated that Arabis flagellosa and A. hirsuta are more similar to each other than to A. paniculata, and Arabis is the closest relative of Draba among all Brassicaceae genera. These findings provide valuable information for the optimal exploitation of this model species as a heavy-metal hyperaccumulator. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01151-1.

14.
Theor Appl Genet ; 134(3): 909-921, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33392708

RESUMO

KEY MESSAGE: A single dominant powdery mildew resistance gene MlNFS10 was identified in wild emmer wheat and mapped within a 0.3cM genetic interval spanning a 2.1Mb physical interval on chromosome arm 4AL. Wheat powdery mildew caused by Blumeria graminis forma specialis tritici (Bgt) is a globally devastating disease. The use of powdery mildew resistance genes from wild relatives of wheat is an effective method of disease management. Our previous research has shown that disruptive ecological selection has driven the discrete adaptations of the wild emmer wheat population on the south facing slope (SFS) and north facing slope (NFS) at the microsite of "Evolution Canyon" at Mount Carmel, Israel and demonstrated that 16 accessions in the NFS population display high resistance to 11 powdery mildew isolates (collected from different wheat fields in China). Here, we constructed bi-parental population by crossing the accession NFS-10 (resistant to 22 Bgt races collected from China in seedling resistance screen) and the susceptible line SFS2-12. Genetic analysis indicated that NFS-10 carries a single dominant gene, temporarily designated MlNFS10. Ultimately, 13 markers were successfully located within the long arm of chromosome 4A, thereby delineating MlNFS10 to a 0.3 cM interval covering 2.1 Mb (729275816-731365462) in the Chinese Spring reference sequence. We identified disease resistance-associated genes based on the RNA-seq analysis of both parents. The tightly linked InDel marker XWsdau73447 and SSR marker XWsdau72928 were developed and used for marker-assisted selection when MlNFS10 was introgressed into a hexaploid wheat background. Therefore, MlNFS10 can be used for improvement of germplasm in breeding programs for powdery mildew resistant cultivars.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
15.
Breed Sci ; 69(3): 503-507, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598084

RESUMO

Wheat processing quality is mainly correlated with high-molecular-weight glutenin subunits (HMW-GS) of grain endosperm. In bread wheat, the number of HMW-GS alleles are limited. However, wheat relative species possess numerous HMW-GS genes. In our previous study, a pair of novel HMW-GS 1Ux3.5+1Uy1.9 was characterized in Aegilops umbellulata. In this work, a novel wheat-Ae. umbellulata addition line, GN05, carrying a pair of 1U chromosome was developed and identified via cytogenetic analysis. Protein composition analysis indicated that GN05 carried HMW-GS of Ae. umbellulata. Accumulation of glutenin macropolymer (GMP) showed that GN05 had a much higher GMP content than the recurrent parent Chinese Spring. Rheological characteristics were analyzed by mixing test and the dough quality of GN05 was significantly improved compared to Chinese Spring. The results presented here may provide a valuable resource for the improvement of bread wheat quality.

16.
Breed Sci ; 68(2): 289-293, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875614

RESUMO

A wheat-Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1Ss from Ae. searsii, was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1Ss loci of Ae. searsii. Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.

17.
Plant Cell Rep ; 33(10): 1757-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037996

RESUMO

KEY MESSAGE: Three TaLTPs were found to enhance chilling tolerance of transgenic Arabidopsis, which were characterized by analyzes of promoter-GUS activity, subcellular localization, chromosomal location and transcriptional profile. Non-specific lipid transfer proteins (nsLTP) are abundantly expressed in plants, however, their functions are still unclear. In this study, we primarily characterized the functions of 3 type I TaLTP genes that were localized on chromosomes 3A, 3B, and 5D, respectively. The transcripts of TaLTPIb.1 and TaLTPIb.5 were induced under chilling, wound, and drought conditions, while TaLTPId.1 was only up-regulated by dark treatment. All the 3 TaLTP genes could be stimulated by the in vitro treatment of salicylic acid, while TaLTPId.1 was also positively regulated by methyljasmonic acid. Furthermore, the promoter-reporter assay of TaLTPIb.1 in the transgenic brachypodium showed a typical epidermis-specific expression pattern of this gene cluster. When fused with EGFP, all the 3 proteins were shown to localize on the plasma membrane in transgenic tobacco, although a signal in chloroplasts was also observed for TaLTPId.1. Heterogeneous overexpression of each of the TaLTP genes in Arabidopsis resulted in longer root length compared with wild type plants under chilling condition. These results suggest that type I TaLTPs may have a conserved functionality in chilling tolerance by lipid permeation in the plasma membrane of epidermal cells. On the other hand, the type I TaLTPs may exert functional divergence mainly through regulatory subfunctionalization.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética
18.
Environ Pollut ; 343: 123289, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176638

RESUMO

The Cd tolerance protein SaCTP3, which responds to Cd stress, was identified in Sedum alfredii; however, how to improve the efficiency of phytoremediation of Cd-contaminated soil using the CTP gene remains unknown. In this study, the phytoremediation potential of SaCTP3 of Sedum alfredii was identified. In the yeast Cd-sensitive strain Δycf1 overexpressing SaCTP3, the accumulation of Cd was higher than that in the Δycf1 strain overexpressing an empty vector. Transgenic sorghum plants overexpression SaCTP3 were further constructed to verify the function of SaCTP3. Compared to wild-type plants, the SaCTP3-overexpressing lines exhibited higher Cd accumulation under 500 µM Cd conditions. The average Cd content inSaCTP3-overexpressing plants is more than four times higher than that of WT plants. This was accompanied by an enhanced ability to scavenge ROS, as evidenced by the significantly increased activities of peroxidase, catalase, and superoxide dismutase in response to Cd stress. Pot experiments further demonstrated that SaCTP3 overexpression resulted in improved soil Cd scavenging and photosynthetic abilities. After 20 days of growth, the average Cd content in the soil planted with SaCTP3-overexpressing sorghum decreased by 19.4%, while the residual Cd content in the soil planted with wild-type plants was only reduced by 5.4%. This study elucidated the role of SaCTP3 from S.alfredii, highlighting its potential utility in genetically modifying sorghum for the effective phytoremediation of Cd.


Assuntos
Sedum , Poluentes do Solo , Sorghum , Cádmio/análise , Sedum/genética , Sedum/metabolismo , Sorghum/genética , Expressão Ectópica do Gene , Plantas Geneticamente Modificadas/metabolismo , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
19.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611479

RESUMO

Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.

20.
Plant Physiol Biochem ; 208: 108469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437752

RESUMO

Wheat is a vital food crop that faces threats from various abiotic and biotic stresses. Understanding the molecular mechanism of cadmium (Cd) resistance can provide valuable insights into the tolerance of wheat. Plant proteins known as Topless/Topless-Related (TPL/TPR) play a role in growth, development, defense regulation, and stress response. In this study, we identified TaTPR2 as being induced by Cd stress treatment. Upon Cd treatment, wheat plants overexpressing TaTPR2 exhibited better growth compared to wild-type (WT) plants. Moreover, the transgenic lines showed reduced accumulation of reactive oxygen species (ROS), along with significantly higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) compared to WT plants. Additionally, the transgenic lines exhibited lower levels of malondialdehyde (MDA) and electrolyte leakage compared to WT plants. Further analysis revealed that TabHLH41 directly binds to the E-box motif of the TaTPR2 promoter and positively regulates its expression. Overall, the overexpression of TaTPR2 in transgenic wheat resulted in reduced accumulation of Cd and ROS. These findings highlight the significance of the TabHLH41-TaTPR2 pathway as a crucial response to Cd stress in wheat.


Assuntos
Cádmio , Triticum , Espécies Reativas de Oxigênio/metabolismo , Cádmio/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA