Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(11): 6707-6720, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390619

RESUMO

A growing body of evidence suggests that microplastics may be colonized with a unique microbiome, termed 'plastisphere', in aquatic environments. However, the deep mechanisms (deterministic and/or stochastic processes) underlying the community assembly on microplastics are still poorly understood. Here, we took the estuary of Hangzhou Bay (Zhejiang, China) as an example and examined the assembly mechanisms of bacterial communities in water and microplastic samples. Results from high-throughput sequencing showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla across all samples. Additionally, microorganisms from plastisphere and planktonic communities exhibited contrasting taxonomic compositions, with greater within-group variation for microplastic samples. The null model analysis indicated the plastisphere bacterial communities were dominantly driven by the stochastic process of drift (58.34%) and dispersal limitation (23.41%). The normalized stochasticity ratio (NST) also showed that the community assembly on microplastics was more stochastic (NST > 50%). Based on the Sloan neutral community model, the migration rate for plastisphere communities (0.015) was significantly lower than that for planktonic communities (0.936), potentially suggesting that it is the stochastic balance between loss and gain of bacteria (e.g., stochastic births and deaths) critically shaping the community assembly on microplastics and generating the specific niches. This study greatly enhanced our understanding of the ecological patterns of microplastic-associated microbial communities in aquatic environments.


Assuntos
Microbiota , Microplásticos , Bactérias/genética , Plásticos , Processos Estocásticos
2.
J Hazard Mater ; 439: 129610, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863232

RESUMO

Biodegradable plastics have emerged as an ecological alternative to conventional petroleum-based plastics. Despite the recent advances in the effects of conventional microplastic on soil ecosystems, the ecological impact of biodegradable microplastics in soil environments remains poorly understood. Here, we performed soil microcosms with conventional (polyethylene and polystyrene) and biodegradable (polybutylene succinate and polylactic acid) microplastics to estimate their effects on the success patterns, co-occurrence networks, and the assembly mechanisms of soil bacterial communities. Biodegradable microplastics significantly altered the soil bacterial community composition with steeper temporal turnovers (rate: 0.317 - 0.514) compared to the conventional microplastic treatments (rate: 0.211 - 0.220). Network under biodegradable microplastics showed greater network complexity, including network size, connectivity, average clustering coefficient, and the number of keystone species, as compared with the conventional microplastic treatments. Additionally, the biodegradable microplastic network had higher robustness, which may be potentially due to the enhanced dissolved organic carbon contents in the soil treated with biodegradable microplastics. The bacterial community assembly was initially governed by deterministic homogeneous selection (93 - 100 %) under the stress of microplastics, but was progressively structured by increasing stochastic homogeneous dispersal (17.8 - 73.3 %) over time. The normalized stochasticity ratio also revealed that the application of microplastics increased the importance of stochastic processes following incubation. These findings greatly enhanced our understanding of the ecological mechanisms and interactions of soil bacterial communities in response to microplastic stress.


Assuntos
Plásticos Biodegradáveis , Microplásticos , Bactérias , Ecossistema , Microplásticos/toxicidade , Plásticos/toxicidade , Solo , Microbiologia do Solo
3.
Sci Total Environ ; 806(Pt 2): 150516, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592287

RESUMO

Increasing research has recognized that the ubiquitous presence of microplastics in terrestrial environments is undeniable, which potentially alters the soil ecosystem properties and processes. The fact that microplastics with diverse characteristics enter into the soil may induce distinct effects on soil ecosystems. Our knowledge of the impacts of microplastics with different polymers, shapes, and concentrations on soil bacterial communities is still limited. To address this, we examined the effects of spherical microplastics (150 µm) with different polymers (i.e., polyethylene (PE), polystyrene (PS), and polypropylene (PP)) and four shapes of PP microplastics (i.e., fiber, film, foam, and particle) at a constant concentration (1%, w/w) on the soil bacterial community in an agricultural soil over 60 days. Treatments with different concentrations (0.01-20%, w/w) of PP microplastic particles (150 µm) were also included. The bacterial communities in PE and PP treatments showed a similar pattern but separated from those in PS-treated soils, indicating the polymer backbone structure is an important factor modulating the soil bacterial responses. Fiber, foam, and film microplastics significantly affected the soil bacterial composition as compared to the particle. The community dissimilarity of soil bacteria was significantly (R2 = 0.592, p < 0.001) correlated with the changes of microplastic concentration. The random forest model identified that certain bacteria belonging to Patescibacteria were closely linked to microplastic contamination. Additionally, analysis of the predicted function further showed that microplastics with different characteristics caused distinct effects on microbial community function. Our findings suggested that the idiosyncrasies of microplastics should not be neglected when studying their effects on terrestrial ecosystems.


Assuntos
Microbiota , Microplásticos , Ecossistema , Plásticos/toxicidade , Polímeros , Solo
4.
J Hazard Mater ; 424(Pt A): 127282, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607029

RESUMO

Environmental concerns with liberal petroleum-based plastic use have led to demand for sustainable biodegradable alternatives. However, the inadequate end-of-life treatment of plastics may emit microplastics, either conventional or biodegradable, to the terrestrial environment. It is essential to evaluate the possible effects of conventional and biodegradable microplastics on the composition and function of soil microbial communities. Therefore, we conducted a soil microcosm experiment with polyethylene (PE), polystyrene (PS), polylactide (PLA), or polybutylene succinate (PBS) microplastics. The soil microbiome and metabolome were evaluated via 16S rRNA gene sequencing, metagenomics, and untargeted metabolomics. We reported that the presence of conventional or biodegradable microplastics can significantly alter soil microbial community composition. Compared to the control soils, the microbiome in PBS and PLA amended soils exhibited higher potential for uptake of exogenous carbohydrates and amino acids, but a reduced capacity for related metabolic function, potentially due to catabolite repression. No differences in soil metabolome can be observed between conventional microplastic treatments and the control. The potential reason may be that the functional diversity was unaffected by PE and PS microplastics, while the biodegradable particles promoted the soil microbial multifunctionality. Our findings systematically shed light on the influence of conventional and biodegradable microplastics on soil microorganisms, facilitating microplastic regulation.


Assuntos
Microbiota , Microplásticos , Metaboloma , Plásticos , RNA Ribossômico 16S/genética , Solo
5.
J Hazard Mater ; 409: 124979, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421879

RESUMO

Growing evidence have demonstrated that microplastics in the marine ecosystem can provide novel substrates for biofilm formation, potentially facilitating the spread of antibiotic resistance. However, the occurrence of antibiotic resistance genes (ARGs) in the biofilm on microplastics has not been fully explored. This study used the metagenomic data of biodegradable and non-biodegradable microplastics staged at a coastal lagoon in the northern Gulf of Mexico to profile the ARGs and their bacterial hosts. The abundance and Shannon diversity of ARGs on biodegradable poly hydroxy alkanoate (PHA) and non-biodegradable polyethylene terephthalate (PET) have no significant differences. Nevertheless, the abundance of multidrug resistance genes on PET (3.05 copies per 16S rRNA) was statistically higher than that on PHA (2.05). Beta diversity showed that the overall pattern of resistome on PHA was significantly distinct with that on PET. Procrustes analysis suggested a good-fit correlation between ARG profiles and bacterial community composition. The host-tracking analysis identified that Pseudomonas was always the major host for glycopeptide and multidrug resistance genes in PET and PHA biofilms, whereas the primary host for macrolide-lincosamide-streptogramin (MLS) changed to Desulfovibrio on PET. This study provided the first metagenomic insights into the ARGs and their hosts on biodegradable and non-biodegradable microplastics, suggesting that both two types of plastics harbor ARGs with preferences.


Assuntos
Antibacterianos , Plásticos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ecossistema , Genes Bacterianos , Microplásticos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA