Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(49): 15413-15421, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459439

RESUMO

Graphene oxide (GO) has been unveiled to exhibit high proton conductivity in a humidified or aqueous environment, making it a promising candidate to construct proton conduction nanochannels. In this work, we systematically investigate how the confinement effect and surface chemistry influence the proton transportation behavior in graphene-based nanochannels via extensive ReaxFF MD simulations. Graphene (GE), graphane (GA), and hydroxygraphane (HG) sheets were employed to mimic the graphitic and functionalized region of GO and construct nanochannels with different interlayer distances. We find that confined water molecules are stratified and their orientation is influenced by the surface chemistry, thus impacting the distribution of protons. Surface chemistry makes the compression of the hydrogen-bond network induced by the confinement effect more variable. The hydrogen-bond network between GE slabs is crushed by extreme confinement and ultrafast proton transportation behavior mainly achieved via vehicle mechanism. Meanwhile, the hydrogen-bond network and solvation structure can be kept more complete with the existence of functional groups. The hydrogen bonds formed with surface functional groups impede the transportation of water molecules but allow more Grotthuss hopping of protons to different extents. Our work clarified the proton transportation mechanism in graphene-based nanochannels with different interlayer distances and surface chemistry and can guide the future design of proton conduction devices such as proton exchange membranes.

2.
ACS Appl Mater Interfaces ; 13(39): 46821-46829, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547898

RESUMO

The practical application of lithium-/sodium-metal batteries is currently hindered by severe safety issues caused by uncontrolled continuous dendrite growth. Semiconductive nanoporous g-C3N4 film has been demonstrated to be an effective protection layer for lithium-/sodium-metal anode, which can suppress the growth of dendrite. However, the underlying mechanism of how this semiconductive flexible thin film works to suppress dendrite growth remains unclear. In this work, we investigate the detailed working mechanism of g-C3N4 protection layer employing both density functional theory calculations and ab initio molecular dynamics simulations. The calculation results indicate that g-C3N4 layers show strong adhesion toward the lithium-/sodium-metal surface. When contacting with lithium/sodium metal, the intrinsic triangular nanopores of g-C3N4 will be quickly filled with lithium/sodium atoms, turning the semiconductive g-C3N4 into a metallic material. Lithium/sodium atoms can migrate through the triangular nanopores of stacked g-C3N4 layers via a vacancy-mediated approach with moderate energy barriers of 0.42 and 0.61 eV, respectively. With a low current density, the newly deposited lithium/sodium atoms can permeate through the g-C3N4 protection layers, therefore resulting in a flat electrode surface with no dendrite; with a high current density, however, the newly deposited lithium/sodium atoms cannot transport across the protection layer timely, which will result in the aggregation of lithium/sodium atoms on the surface of the g-C3N4 protection layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA