Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 630(8016): 340-345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778106

RESUMO

Two-dimensional (2D) semiconductors have shown great potential for monolithic three-dimensional (M3D) integration due to their dangling-bonds-free surface and the ability to integrate to various substrates without the conventional constraint of lattice matching1-10. However, with atomically thin body thickness, 2D semiconductors are not compatible with various high-energy processes in microelectronics11-13, where the M3D integration of multiple 2D circuit tiers is challenging. Here we report an alternative low-temperature M3D integration approach by van der Waals (vdW) lamination of entire prefabricated circuit tiers, where the processing temperature is controlled to 120 °C. By further repeating the vdW lamination process tier by tier, an M3D integrated system is achieved with 10 circuit tiers in the vertical direction, overcoming previous thermal budget limitations. Detailed electrical characterization demonstrates the bottom 2D transistor is not impacted after repetitively laminating vdW circuit tiers on top. Furthermore, by vertically connecting devices within different tiers through vdW inter-tier vias, various logic and heterogeneous structures are realized with desired system functions. Our demonstration provides a low-temperature route towards fabricating M3D circuits with increased numbers of tiers.

2.
Nano Lett ; 24(12): 3768-3776, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477579

RESUMO

The reduced dimensionality and interfacial effects in magnetic nanostructures open the feasibility to tailor magnetic ordering. Here, we report the synthesis of ultrathin metallic Co2Si nanoplates with a total thickness that is tunable to 2.2 nm. The interfacial magnetism coupled with the highly anisotropic nanoplate geometry leads to strong perpendicular magnetic anisotropy and robust hard ferromagnetism at room temperature, with a Curie temperature (TC) exceeding 950 K and a coercive field (HC) > 4.0 T at 3 K and 8750 Oe at 300 K. Theoretical calculations suggest that ferromagnetism originates from symmetry breaking and undercoordinated Co atoms at the Co2Si and SiO2 interface. With protection by the self-limiting intrinsic oxide, the interfacial ferromagnetism of the Co2Si nanoplates exhibits excellent environmental stability. The controllable growth of ambient stable Co2Si nanoplates as 2D hard ferromagnets could open exciting opportunities for fundamental studies and applications in Si-based spintronic devices.

3.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842926

RESUMO

Two-dimensional (2D) Fe3Sn2, which is a room-temperature ferromagnetic kagome metal, has potential applications in spintronic devices. However, the systematic synthesis and magnetic study of 2D Fe3Sn2 single crystals have rarely been reported. Here we have synthesized 2D hexagonal and triangular Fe3Sn2 nanosheets by controlling the amount of FeCl2 precursors in the chemical vapor deposition (CVD) method. It is found that the hexagonal Fe3Sn2 nanosheets exist with Fe vacancy defects and show no obvious coercivity. While the triangular Fe3Sn2 nanosheet has obvious hysteresis loops at room temperature, its coercivity first increases and then remains stable with an increase in temperature, which should result from the competition of the thermal activation mechanism and spin direction rotation mechanism. A first-principles calculation study shows that the Fe vacancy defects in Fe3Sn2 can increase the distances between Fe atoms and weaken the ferromagnetism of Fe3Sn2. The resulting 2D Fe3Sn2 nanosheets provide a new choice for spintronic devices.

4.
Nano Lett ; 24(2): 770-776, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38180314

RESUMO

van der Waals heterostructures (vdWHs) based on two-dimensional (2D) semiconductors have attracted considerable attention. However, the reported vdWHs are largely based on vertical device structure with large overlapping area, while the realization of lateral heterostructures contacted through 2D edges remains challenging and is majorly limited by the difficulties of manipulating the lateral distance of 2D materials at nanometer scale (during transfer process). Here, we demonstrate a simple interfacial sliding approach for realizing an edge-by-edge lateral contact. By stretching a vertical vdWH, two 2D flakes could gradually slide apart or toward each other. Therefore, by applying proper strain, the initial vertical vdWH could be converted into a lateral heterojunction with intimately contacted 2D edges. The lateral contact structure is supported by both microscope characterization and in situ electrical measurements, exhibiting carrier tunneling behavior. Finally, this approach can be extended to 3D thin films, as demonstrated by the lateral 2D/3D and 3D/3D Schottky junction.

5.
Small ; 20(28): e2309620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38294996

RESUMO

2D A 2 III B 3 VI ${\mathrm{A}}_2^{{\mathrm{III}}}{\mathrm{B}}_3^{{\mathrm{VI}}}$ compounds (A = Al, Ga, In, and B = S, Se, and Te) with intrinsic structural defects offer significant opportunities for high-performance and functional devices. However, obtaining 2D atomic-thin nanoplates with non-layered structure on SiO2/Si substrate at low temperatures is rare, which hinders the study of their properties and applications at atomic-thin thickness limits. In this study, the synthesis of ultrathin, non-layered α-In2Te3 nanoplates is demonstrated using a BiOCl-assisted chemical vapor deposition method at a temperature below 350 °C on SiO2/Si substrate. Comprehensive characterization results confirm the high-quality single crystal is the low-temperature cubic phase α-In2Te3 , possessing a noncentrosymmetric defected ZnS structure with good second harmonic generation. Moreover, α-In2Te3 is revealed to be a p-type semiconductor with a direct and narrow bandgap value of 0.76 eV. The field effect transistor exhibits a high mobility of 18 cm2 V-1 s-1, and the photodetector demonstrates stable photoswitching behavior within a broadband photoresponse from 405 to 1064 nm, with a satisfactory response time of τrise = 1 ms. Notably, the α-In2Te3 nanoplates exhibit good stability against ambient environments. Together, these findings establish α-In2Te3 nanoplates as promising candidates for next-generation high-performance photonics and electronics.

6.
Opt Lett ; 49(8): 2117-2120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621090

RESUMO

The characterization of inverted structures (crystallographic, ferroelectric, or magnetic domains) is crucial in the development and application of novel multi-state devices. However, determining these inverted structures needs a sensitive probe capable of revealing their phase correlation. Here a contrast-enhanced phase-resolved second harmonic generation (SHG) microscopy is presented, which utilizes a phase-tunable Soleil-Babinet compensator and the interference between the SHG fields from the inverted structures and a homogeneous reference. By this means, such inverted structures are correlated through the π-phase difference of SHG, and the phase difference is ultimately converted into the intensity contrast. As a demonstration, we have applied this microscopy in two scenarios to determine the inverted crystallographic domains in two-dimensional van der Waals material MoS2. Our method is particularly suitable for applying in vacuum and cryogenic environments while providing optical diffraction-limited resolution and arbitrarily adjustable contrast. Without loss of generality, this contrast-enhanced phase-resolved SHG microscopy can also be used to resolve other non-centrosymmetric inverted structures, e.g. ferroelectric, magnetic, or multiferroic phases.

7.
Langmuir ; 40(23): 11959-11965, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38801068

RESUMO

Interfacial self-assembly is a well-established method for the preparation of a two-dimensional (2D) metal nanofilm from nanoscale building blocks. However, the as-prepared nanofilm exhibits limited conductivity because of the large contact resistance at the junctions among its building blocks. Here, we report a salt-assisted, in situ current nanowelding strategy to weld an interfacial Au nanoparticle (NP) film for downstream applications, such as high-performance electrocatalysts. Particularly, we found that salt-assisted interfacial assembly can reduce the size of the nanogaps among neighboring Au NPs and, in turn, greatly improve the conductivity of the resultant Au NP film. Consequently, the Au NP film can be readily welded using current, and the welding extent can be monitored in real-time by looking at the passing current. The welding finally produces a nanoporous Au film (NPGF) with a network nanostructure, high conductivity, and abundant active sites so that it delivers a large current density of 86.96 µA·cm-2 (1.81 times higher than that from the pristine Au NP film) and shows improved cycling stability for methanol electrooxidation. Thus, these results offer a low-cost, solution-processable approach for the fabrication of a large-area, interconnected nanofilm from nanoscale building blocks beyond Au NPs, which may find diverse downstream applications.

8.
ACS Nano ; 18(27): 18022-18035, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934514

RESUMO

Precise synthesis of all-inorganic lead halide perovskite nanowire heterostructures and superlattices with designable modulation of chemical compositions is essential for tailoring their optoelectronic properties. Nevertheless, controllable synthesis of perovskite nanostructure heterostructures remains challenging and underexplored to date. Here, we report a rational strategy for wafer-scale synthesis of one-dimensional periodic CsPbCl3/CsPbI3 superlattices. We show that the highly parallel array of halide perovskite nanowires can be prepared roughly as horizontally guided growth on an M-plane sapphire. A periodic patterning of the sapphire substrate enables position-selective ion exchange to obtain highly periodic CsPbCl3/CsPbI3 nanowire superlattices. This patterning is further confirmed by micro-photoluminescence investigations, which show that two separate band-edge emission peaks appear at the interface of a CsPbCl3/CsPbI3 heterojunction. Additionally, compared with the pure CsPbCl3 nanowires, photodetectors fabricated using these periodic heterostructure nanowires exhibit superior photoelectric performance, namely, high ION/IOFF ratio (104), higher responsivity (49 A/W), and higher detectivity (1.51 × 1013 Jones). Moreover, a spatially resolved visible image sensor based on periodic nanowire superlattices is demonstrated with good imaging capability, suggesting promising application prospects in future photoelectronic imaging systems. All these results based on the periodic CsPbCl3/CsPbI3 nanowire superlattices provides an attractive material platform for integrated perovskite devices and circuits.

9.
ACS Nano ; 18(8): 6276-6285, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354364

RESUMO

Emerging 2D chromium-based dichalcogenides (CrXn (X = S, Se, Te; 0 < n ≤ 2)) have provoked enormous interests due to their abundant structures, intriguing electronic and magnetic properties, excellent environmental stability, and great application potentials in next generation electronics and spintronics devices. Achieving stoichiometry-controlled synthesis of 2D CrXn is of paramount significance for such envisioned investigations. Herein, we report the stoichiometry-controlled syntheses of 2D chromium selenide (CrxSey) materials (rhombohedral Cr2Se3 and monoclinic Cr3Se4) via a Cr-self-intercalation route by designing two typical chemical vapor deposition (CVD) strategies. We have also clarified the different growth mechanisms, distinct chemical compositions, and crystal structures of the two type materials. Intriguingly, we reveal that the ultrathin Cr2Se3 nanosheets exhibit a metallic feature, while the Cr3Se4 nanosheets present a transition from p-type semiconductor to metal upon increasing the flake thickness. Moreover, we have also uncovered the ferromagnetic properties of 2D Cr2Se3 and Cr3Se4 below ∼70 K and ∼270 K, respectively. Briefly, this research should promote the stoichiometric-ratio controllable syntheses of 2D magnetic materials, and the property explorations toward next generation spintronics and magneto-optoelectronics related applications.

10.
Nat Commun ; 15(1): 5484, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942769

RESUMO

The tunable properties of halide perovskite/two dimensional (2D) semiconductor mixed-dimensional van der Waals heterostructures offer high flexibility for innovating optoelectronic and photonic devices. However, the general and robust growth of high-quality monocrystalline halide perovskite/2D semiconductor heterostructures with attractive optical properties has remained challenging. Here, we demonstrate a universal van der Waals heteroepitaxy strategy to synthesize a library of facet-specific single-crystalline halide perovskite/2D semiconductor (multi)heterostructures. The obtained heterostructures can be broadly tailored by selecting the coupling layer of interest, and can include perovskites varying from all-inorganic to organic-inorganic hybrid counterparts, individual transition metal dichalcogenides or 2D heterojunctions. The CsPbI2Br/WSe2 heterostructures demonstrate ultrahigh optical gain coefficient, reduced gain threshold and prolonged gain lifetime, which are attributed to the reduced energetic disorder. Accordingly, the self-organized halide perovskite/2D semiconductor heterostructure lasers show highly reproducible single-mode lasing with largely reduced lasing threshold and improved stability. Our findings provide a high-quality and versatile material platform for probing unique optoelectronic and photonic physics and developing further electrically driven on-chip lasers, nanophotonic devices and electronic-photonic integrated systems.

11.
Zhen Ci Yan Jiu ; 49(4): 398-402, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38649208

RESUMO

OBJECTIVES: To compare the clinical effect of combined therapy of acupotomy and electroacupuncture (EA) with the simple application of EA on knee osteoarthritis (KOA), and their influence on knee function. METHODS: Sixty-eight KOA patients were randomly divided into 2 groups, an acupotomy group and an EA group. In the acupotomy group, the combined therapy of acupotomy and EA was adopted. In the EA group, EA was simply used, delivered once every two days, 3 treatments a week;and the duration of treatment was 4 weeks. In the acupotomy group, besides the treatment as the EA group, acupotomy was combined once weekly, and the duration of treatment was 4 weeks. Separately, before and after treatment, and in 4 and 12 weeks after treatment completion (1-month and 3-month follow-up), the results of the timed up and go test (TUG), the 9-step stair climb test (9-SCT) and the knee function (Western Ontario and McMaster University osteoarthritis index visualization scale [WOMAC]) were measured in the two groups. RESULTS: By the intention-to-treat analysis, the results of TUG, 9-SCT and WOMAC scores were reduced after treatment and in 1-month and 3-month follow-up when compared with those before treatment in the patients of the two groups (P<0.05). Compared with the EA group at the same time point, TUG results were decreased after treatment and in 1-month follow-up, and WOMAC score was reduced after treatment in the acupotomy group. WOMAC score in 1-month follow-up was reduced when compared with that before treatment within the acupotomy group (P<0.05). CONCLUSIONS: Either the simple application of EA or the combined therapy of acupotomy and EA can improve knee function, but the combined therapy obviously increases the walking speed and relieves the symptoms such as joint pain and morning stiffness. The treatment with acupotomy and EA is safe and effective on KOA and the long-term effect is satisfactory.


Assuntos
Terapia por Acupuntura , Eletroacupuntura , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Terapia Combinada , Articulação do Joelho/fisiopatologia , Pontos de Acupuntura
12.
Nat Commun ; 15(1): 5774, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982079

RESUMO

Vertical transistors, in which the source and drain are aligned vertically and the current flow is normal to the wafer surface, have attracted considerable attention recently. However, the realization of high-density vertical transistors is challenging, and could be largely attributed to the incompatibility between vertical structures and conventional lateral fabrication processes. Here we report a T-shape lamination approach for realizing high-density vertical sidewall transistors, where lateral transistors could be pre-fabricated on planar substrates first and then laminated onto vertical substrates using T-shape stamps, hence overcoming the incompatibility between planar processes and vertical structures. Based on this technique, we vertically stacked 60 MoS2 transistors within a small vertical footprint, corresponding to a device density over 108 cm-2. Furthermore, we demonstrate two approaches for scalable fabrication of vertical sidewall transistor arrays, including simultaneous lamination onto multiple vertical substrates, as well as on the same vertical substrate using multi-cycle layer-by-layer laminations.

13.
Natl Sci Rev ; 11(3): nwad315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312382
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA