Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ann Neurol ; 87(2): 217-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794073

RESUMO

OBJECTIVE: Recently, the ASC-1 complex has been identified as a mechanistic link between amyotrophic lateral sclerosis and spinal muscular atrophy (SMA), and 3 mutations of the ASC-1 gene TRIP4 have been associated with SMA or congenital myopathy. Our goal was to define ASC-1 neuromuscular function and the phenotypical spectrum associated with TRIP4 mutations. METHODS: Clinical, molecular, histological, and magnetic resonance imaging studies were made in 5 families with 7 novel TRIP4 mutations. Fluorescence activated cell sorting and Western blot were performed in patient-derived fibroblasts and muscles and in Trip4 knocked-down C2C12 cells. RESULTS: All mutations caused ASC-1 protein depletion. The clinical phenotype was purely myopathic, ranging from lethal neonatal to mild ambulatory adult patients. It included early onset axial and proximal weakness, scoliosis, rigid spine, dysmorphic facies, cutaneous involvement, respiratory failure, and in the older cases, dilated cardiomyopathy. Muscle biopsies showed multiminicores, nemaline rods, cytoplasmic bodies, caps, central nuclei, rimmed fibers, and/or mild endomysial fibrosis. ASC-1 depletion in C2C12 and in patient-derived fibroblasts and muscles caused accelerated proliferation, altered expression of cell cycle proteins, and/or shortening of the G0/G1 cell cycle phase leading to cell size reduction. INTERPRETATION: Our results expand the phenotypical and molecular spectrum of TRIP4-associated disease to include mild adult forms with or without cardiomyopathy, associate ASC-1 depletion with isolated primary muscle involvement, and establish TRIP4 as a causative gene for several congenital muscle diseases, including nemaline, core, centronuclear, and cytoplasmic-body myopathies. They also identify ASC-1 as a novel cell cycle regulator with a key role in cell proliferation, and underline transcriptional coregulation defects as a novel pathophysiological mechanism. ANN NEUROL 2020;87:217-232.


Assuntos
Sistema y+ de Transporte de Aminoácidos/fisiologia , Ciclo Celular/fisiologia , Doenças Musculares/fisiopatologia , Fatores de Transcrição/genética , Adulto , Sistema y+ de Transporte de Aminoácidos/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/fisiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Mutação , Linhagem , Fenótipo
2.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204919

RESUMO

Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype-phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.


Assuntos
Proteínas de Transporte/genética , Anormalidades Congênitas/genética , Doenças Neuromusculares/genética , Fatores de Transcrição/genética , Anormalidades Congênitas/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Complexos Multiproteicos/genética , Mutação , Doenças Neuromusculares/patologia
3.
Hum Mol Genet ; 25(8): 1559-73, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008887

RESUMO

Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism.


Assuntos
Códon sem Sentido , Desenvolvimento Muscular , Doenças Musculares/congênito , Doenças Musculares/patologia , Fatores de Transcrição/genética , Adolescente , Animais , Diferenciação Celular , Linhagem Celular , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Camundongos , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Linhagem , Estabilidade de RNA , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
4.
Hum Mol Genet ; 24(7): 2096-109, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524705

RESUMO

Nuclear lamins are involved in many cellular functions due to their ability to bind numerous partners including chromatin and transcription factors, and affect their properties. Dunnigan type familial partial lipodystrophy (FPLD2; OMIM#151660) is caused in most cases by the A-type lamin R482W mutation. We report here that the R482W mutation affects the regulatory activity of sterol response element binding protein 1 (SREBP1), a transcription factor that regulates hundreds of genes involved in lipid metabolism and adipocyte differentiation. Using in situ proximity ligation assays (PLA), reporter assays and biochemical and transcriptomic approaches, we show that interactions of SREBP1 with lamin A and lamin C occur at the nuclear periphery and in the nucleoplasm. These interactions involve the Ig-fold of A-type lamins and are favored upon SREBP1 binding to its DNA target sequences. We show that SREBP1, LMNA and sterol response DNA elements form ternary complexes in vitro. In addition, overexpression of A-type lamins reduces transcriptional activity of SREBP1. In contrast, both overexpression of LMNA R482W in primary human preadipocytes and endogenous expression of A-type lamins R482W in FPLD2 patient fibroblasts, reduce A-type lamins-SREBP1 in situ interactions and upregulate a large number of SREBP1 target genes. As this LMNA mutant was previously shown to inhibit adipogenic differentiation, we propose that deregulation of SREBP1 by mutated A-type lamins constitutes one underlying mechanism of the physiopathology of FPLD2. Our data suggest that SREBP1 targeting molecules could be considered in a therapeutic context.


Assuntos
Substituição de Aminoácidos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Adulto , Feminino , Humanos , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Adulto Jovem
5.
Genome Res ; 23(10): 1580-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861385

RESUMO

The nuclear lamina is implicated in the organization of the eukaryotic nucleus. Association of nuclear lamins with the genome occurs through large chromatin domains including mostly, but not exclusively, repressed genes. How lamin interactions with regulatory elements modulate gene expression in different cellular contexts is unknown. We show here that in human adipose tissue stem cells, lamin A/C interacts with distinct spatially restricted subpromoter regions, both within and outside peripheral and intra-nuclear lamin-rich domains. These localized interactions are associated with distinct transcriptional outcomes in a manner dependent on local chromatin modifications. Down-regulation of lamin A/C leads to dissociation of lamin A/C from promoters and remodels repressive and permissive histone modifications by enhancing transcriptional permissiveness, but is not sufficient to elicit gene activation. Adipogenic differentiation resets a large number of lamin-genome associations globally and at subpromoter levels and redefines associated transcription outputs. We propose that lamin A/C acts as a modulator of local gene expression outcome through interaction with adjustable sites on promoters, and that these position-dependent transcriptional readouts may be reset upon differentiation.


Assuntos
Tecido Adiposo/citologia , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Transcrição Gênica , Adipogenia , Tecido Adiposo/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Loci Gênicos , Humanos , Lamina Tipo A/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Células-Tronco/citologia , Ativação Transcricional
6.
Exp Cell Res ; 317(20): 2800-13, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21993218

RESUMO

Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (∆607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.


Assuntos
Lamina Tipo A/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Progéria/genética , Progéria/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
J Cell Mol Med ; 13(5): 959-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19220582

RESUMO

Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.


Assuntos
Lamina Tipo A/fisiologia , Lipodistrofia Parcial Familiar/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Precursores de Proteínas/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Peróxido de Hidrogênio/farmacologia , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Complexos Multiproteicos , Espécies Reativas de Oxigênio/metabolismo
8.
Nucleic Acids Res ; 35(17): 5898-912, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17726056

RESUMO

DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, 'mediator' proteins are in charge of recruiting 'signal transducers' to molecules 'sensing' the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. Here we show that, despite low sequence conservation, Rad9 exhibits a tandem tudor domain structurally close to those found in human/mouse 53BP1 and fission yeast Crb2. Moreover, this region is important for the resistance of Saccharomyces cerevisiae to different genotoxic stresses. It does not mediate direct binding to a histone H3 peptide dimethylated on K79, nor to a histone H4 peptide dimethylated on lysine 20, as was demonstrated for 53BP1. However, the tandem tudor region of Rad9 directly interacts with single-stranded DNA and double-stranded DNAs of various lengths and sequences through a positively charged region absent from 53BP1 and Crb2 but present in several yeast Rad9 homologs. Our results argue that the tandem tudor domains of Rad9, Crb2 and 53BP1 mediate chromatin binding next to double-strand breaks. However, their modes of chromatin recognition are different, suggesting that the corresponding interactions are differently regulated.


Assuntos
Proteínas de Ciclo Celular/química , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Histonas/química , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Biochemistry ; 47(23): 6199-207, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18484749

RESUMO

The eukaryotic mismatch repair (MMR) protein MSH6 exhibits a core region structurally and functionally similar to bacterial MutS. However, it possesses an additional N-terminal region (NTR), comprising a PCNA binding motif, a large region of unknown function and a nonspecific DNA binding fragment. Yeast NTR was recently described as an extended tether between PCNA and the core of MSH6 . In contrast, we show that human NTR presents a globular PWWP domain in the region of unknown function. We demonstrate that this PWWP domain binds double-stranded DNA, without any preference for mismatches or nicks, whereas its apparent affinity for single-stranded DNA is about 20 times lower. The S144I mutation, which in human MSH6 causes inherited somatic defects in MMR resulting in increased development of hereditary non polyposis colorectal cancer , is located in the DNA binding surface of the PWWP domain. However, it only moderately affects domain stability, and it does not perturb DNA binding in vitro.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , DNA/química , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia em Gel , Neoplasias Colorretais/genética , Sequência Conservada , DNA/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Methods Mol Biol ; 1411: 325-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27147052

RESUMO

It is now clearly demonstrated that nuclear lamins interact with the genomic DNA and largely contribute to its three-dimensional organization and transcriptional regulation. Emergence of genome-wide mapping techniques such as DamID technology or chromatin immunoprecipitation (ChIP) followed by array hybridization or high-throughput sequencing has allowed the mapping of large lamin-interacting genomic areas called lamina-associated domains. These cover up to 40 % of the genome and are preferentially located in transcriptionally silent heterochromatin at the nuclear periphery. We recently showed that the use of enzymatic rather than physical fragmentation of chromatin in ChIP experiments uncovers new chromatin compartments with features of euchromatin that interacts with A-type lamins. We describe here a detailed ChIP procedure to covalently cross-link protein-DNA, fragment the chromatin fibers by micrococcal nuclease digestion, and solubilize the lamin network with a short sonication pulse prior to immunoprecipitating the lamin-DNA complexes using specific antibodies. Enriched DNA fragments from the lamin-binding sites are then purified as suitable samples for qPCR analysis or high-throughput sequencing.


Assuntos
Imunoprecipitação da Cromatina , Cromatina/genética , Cromatina/metabolismo , Laminas/metabolismo , Nuclease do Micrococo/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina/métodos , DNA/genética , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Nucleares/metabolismo , Ligação Proteica
11.
Nucleus ; 6(1): 30-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25602132

RESUMO

The nuclear lamina has been shown to interact with the genome through lamina-associated domains (LADs). LADs have been identified by DamID, a proximity labeling assay, and more recently by chromatin immunoprecipitation-sequencing (ChIP-seq) of A- and B-type lamins. LADs form megabase-size domains at the nuclear periphery, they are gene-poor and mostly heterochromatic. Here, we show that the mode of chromatin fragmentation for ChIP, namely bath sonication or digestion with micrococcal nuclease (MNase), leads to the discovery of common but also distinct sets of lamin-interacting domains, or LiDs. Using ChIP-seq, we show the existence of lamin A/C (LMNA) LiDs with distinct gene contents, histone composition enrichment and relationships to lamin B1-interacting domains. The extent of genome coverage of lamin A/C (LMNA) LiDs in sonicated or MNase-digested chromatin is similar (∼730 megabases); however over half of these domains are uniquely detected in sonicated or MNase-digested chromatin. Sonication-specific LMNA LiDs are gene-poor and devoid of a broad panel of histone modifications, while MNase-specific LMNA LiDs are of higher gene density and are enriched in H3K9me3, H3K27me3 and in histone variant H2A.Z. LMNB1 LiDs are gene-poor and show no or little enrichment in these marks. Comparison of published LMNB1 DamID LADs with LMNB1 and LMNA LiDs identified here by ChIP-seq further shows that LMNA can associate with 'open' chromatin domains displaying euchromatin characteristics, and which are not associated with LMNB1. The differential genomic and epigenetic properties of lamin-interacting domains reflect the existence of distinct LiD populations identifiable in different chromatin contexts, including nuclease-accessible regions presumably localized in the nuclear interior.


Assuntos
Imunoprecipitação da Cromatina , Cromatina/genética , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Nuclease do Micrococo/metabolismo , Análise de Sequência de DNA , Sonicação , Transporte Ativo do Núcleo Celular , Cromatina/química , Eucromatina/química , Eucromatina/genética , Eucromatina/metabolismo , Genômica , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
12.
FEBS Lett ; 584(14): 2999-3004, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20580717

RESUMO

Mutations in the lamin A/C (LMNA) gene that cause Hutchinson-Gilford progeria syndrome (HGPS) lead to expression of a protein called progerin with 50 amino acids deleted from the tail of prelamin A. In cells from patients with HGPS, both the amount and distribution of heterochromatin are altered. We designed in vitro assays to ask whether such alterations might reflect changes in chromatin, DNA and/or histone binding properties of progerin compared to wild-type lamin C-terminal tails. We show that progerin tail has a reduced DNA/chromatin binding capacity and modified trimethylated H3K27 binding pattern, offering a molecular mechanism for heterochromatin alterations related to HGPS.


Assuntos
Progéria/genética , Progéria/metabolismo , Animais , Sítios de Ligação/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Genótipo , Heterocromatina/metabolismo , Humanos , Lamina Tipo A , Laminas/genética , Laminas/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Nucleares , Precursores de Proteínas , Deleção de Sequência
13.
J Biol Chem ; 281(26): 18208-15, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16648637

RESUMO

MAN1 is an integral protein of the inner nuclear membrane that interacts with nuclear lamins and emerin, thus playing a role in nuclear organization. It also binds to chromatin-associated proteins and transcriptional regulators, including the R-Smads, Smad1, Smad2, and Smad3. Mutations in the human gene encoding MAN1 cause sclerosing bone dysplasias, which sometimes have associated skin abnormalities. At the molecular level, these mutations lead to loss of the MAN1-R-Smads interaction, thus perturbing transforming growth factor beta superfamily signaling pathway. As a first step to understanding the physical basis of MAN1 interaction with R-Smads, we here report the structural characterization of the carboxyl-terminal nucleoplasmic region of MAN1, which is responsible for Smad binding. This region exhibits an amino-terminal globular domain adopting a winged helix fold, as found in several Smad-associated sequence-specific DNA binding factors. Consistently, it binds to DNA through the positively charged recognition helix H3 of its winged helix motif. However, it does not show the predicted carboxyl-terminal U2AF homology domain in solution, suggesting that the folding and stability of such a domain in MAN1 depend upon binding to an unidentified partner. Modeling the complex between DNA and the winged helix domain shows that the regions involved in DNA binding are essentially distinct from those reported to be involved in Smad binding. This suggests that MAN1 binds simultaneously to R-Smads and their targeted DNA sequences.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição Winged-Helix/química , Fatores de Transcrição Winged-Helix/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Smad Reguladas por Receptor/metabolismo , Fatores de Transcrição Winged-Helix/genética
14.
Methods ; 33(1): 12-7, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15039082

RESUMO

Packaging of the DNA in nucleosomes restricts its accessibility to regulatory factors and enzymatic complexes, making a local remodeling of the nucleosome structure a prerequisite to the establishment of protein-DNA interactions. The use of an experimental system in which one nucleosome is reconstituted on a short linear DNA fragment allows gel fractionation of nucleosomes according to their translational positions, whose locations are dependent on the underlying DNA sequence. Nucleosome mobilization by chromatin remodeling factors is easily detected by observing band disappearance in gel, which in turn provides evidence for histone octamer displacement. Here, we provide methods for chromatin assembly that we have been using in our analysis for nucleosome mobilization by chromatin remodeling factors. These methods are straightforward and easy to follow. Thus, they may provide a good starting assay system for analysis of nucleosome movements by other chromatin remodeling machines.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Animais , DNA/metabolismo , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Eletroforese em Gel de Poliacrilamida , Nucleossomos/genética , Nucleossomos/metabolismo , Sacarose , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
15.
Biochemistry ; 42(17): 4819-28, 2003 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12718522

RESUMO

Lamins A and C are intermediate filament proteins which polymerize into the nucleus to form the nuclear lamina network. The lamina is apposed to the inner nuclear membrane and functions in tethering chromatin to the nuclear envelope and in maintaining nuclear shape. We have recently characterized a globular domain that adopts an immunoglobulin fold in the carboxyl-terminal tail common to lamins A and C. Using an electrophoretic mobility shift assay (EMSA), we show that a peptide containing this domain interacts in vitro with DNA after dimerization through a disulfide bond, but does not interact with the core particle or the dinucleosome. The covalent dimer binds a 30-40 bp DNA fragment with a micromolar affinity and no sequence specificity. Using nuclear magnetic resonance (NMR) and an EMSA, we observed that two peptide regions participate in the DNA binding: the unstructured amino-terminal part containing the nuclear localization signal and a large positively charged region centered around amino acid R482 at the surface of the immunoglobulin-like domain. Mutations R482Q and -W, which are responsible for Dunnigan-type partial lipodystrophy, lower the affinity of the peptide for DNA. We conclude that the carboxyl-terminal end of lamins A and C binds DNA and suggest that alterations in lamin-DNA interactions may play a role in the pathophysiology of some lamin-linked diseases.


Assuntos
DNA/metabolismo , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sítios de Ligação de Anticorpos , DNA/química , Dimerização , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo B/genética , Lipodistrofia/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA