Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Invest New Drugs ; 34(2): 139-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780083

RESUMO

Cucurbitacins and their derivatives are triterpenoids that are found in various plant families, and are known for their pharmacological and biological activities, including anti-cancer effects. Lung cancer represents a major public health problem, with non-small-cell lung cancer (NSCLC) being the most frequent and aggressive type of lung cancer. The objective of this work was to evaluate four cucurbitacins (CUCs) for their cytotoxic activity, effects on apoptosis induction, cell cycle progression, anti-migratory, and anti-invasive effects on the human NSCLC cell line (A549 cells). Our findings showed that these CUCs could suppress human NSCLC cell growth in vitro through their effects on the PI3Kinase and MAPK pathways, which lead to programmed cell death induction, as well as inhibition of cell migration and cell invasion. Additionally, these effects culminate in apoptosis induction and G2/M cell cycle arrest by modulating cyclin B1 expression, and in the mitigation of strategic steps of lung cancer metastasis, including migration and invasion of A549 cells. These results suggest that two natural (DDCB and CB) and two novel semisynthetic derivatives of cucurbitacin B (ACB and DBCB) could be considered as promising compounds with antitumor potential.


Assuntos
Apoptose/efeitos dos fármacos , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cucurbitacinas/química , Ciclina B1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
2.
J Virol ; 84(18): 9439-51, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592098

RESUMO

Recently it has been shown that the proinflammatory NF-kappaB pathway promotes efficient influenza virus propagation. Based on these findings, it was suggested that NF-kappaB blockade may be a promising approach for antiviral intervention. The classical virus-induced activation of the NF-kappaB pathway requires proteasomal degradation of the inhibitor of NF-kappaB, IkappaB. Therefore, we hypothesized that inhibition of proteasomal IkappaB degradation should impair influenza A virus (IAV) replication. We chose the specific proteasome inhibitor PS-341, which is a clinically approved anticancer drug also known as Bortezomib or Velcade. As expected, PS-341 treatment of infected A549 cells in a concentration range that was not toxic resulted in a significant reduction of progeny virus titers. However, we could not observe the proposed suppression of NF-kappaB-signaling in vitro. Rather, PS-341 treatment resulted in an induction of IkappaB degradation and activation of NF-kappaB as well as the JNK/AP-1 pathway. This coincides with enhanced expression of antiviral genes, such as interleukin-6 and, most importantly, MxA, which is a strong interferon (IFN)-induced suppressor of influenza virus replication. This suggests that PS-341 may act as an antiviral agent via induction of the type I IFN response. Accordingly, PS-341 did not affect virus titers in Vero cells, which lack type I IFN genes, but strongly inhibited replication of vesicular stomatitis virus (VSV), a highly IFN-sensitive pathogen. Thus, we conclude that PS-341 blocks IAV and VSV replication by inducing an antiviral state mediated by the NF-kappaB-dependent expression of antivirus-acting gene products.


Assuntos
Antivirais/farmacologia , Ácidos Borônicos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Pirazinas/farmacologia , Vesiculovirus/efeitos dos fármacos , Bortezomib , Linhagem Celular , Células Epiteliais/virologia , Proteínas de Ligação ao GTP/biossíntese , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Interleucina-6/biossíntese , Proteínas de Resistência a Myxovirus
3.
FASEB J ; 24(10): 4068-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20484669

RESUMO

Influenza viruses have to overcome the type I interferon induced antiviral response to successfully propagate in target cells. A major antiviral factor induced by interferons is the protein kinase R (PKR) that is further activated by dsRNA and phosphorylates the eukaryotic initiation factor 2 (eIF2α). This results in inhibition of protein translation thereby limiting viral replication. Here we describe a novel mechanism by which influenza A viruses escape the antiviral action of PKR. We demonstrate that the mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) MK2 and MK3 are activated on virus infection and, in their active form, directly interact with the repressor of the inhibitor of PKR p88(rIPK). This leads to recruitment of a tetrameric protein complex consisting of p88(rIPK), the inhibitor of PKR p58(IPK) and PKR itself, and finally results in inhibition of the kinase. The importance of MKs for influenza virus propagation was further underscored by demonstrating reduced viral progeny in cells genetically deficient in MK2 or MK3 genes as well as in highly proliferating tumor cells, in which expression of MKs was diminished by specific small interfering RNA. Accordingly, knockdown of MKs resulted in enhanced phosphorylation of PKR and its substrate eIF2α.


Assuntos
Vírus da Influenza A/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Replicação Viral , eIF-2 Quinase/antagonistas & inibidores , Sequência de Bases , Linhagem Celular , Primers do DNA , Técnicas de Inativação de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Cell Microbiol ; 11(10): 1502-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19523156

RESUMO

The 11(th) influenza A virus (IAV) protein PB1-F2 is encoded by an alternative reading frame of the PB1 polymerase gene and found in the nucleus, cytosol and at the mitochondria of infected cells, the latter is consistent with experimental evidence for its pro-apoptotic function. Here, the function of PB1-F2 as a phosphoprotein was characterized. PB1-F2 derived from isolate IAV(PR8) and synthetic fragments thereof were phosphorylated in vitro by purified protein kinase C (PKC) and cellular extract. Constitutively active PKCalpha interacts with PB1-F2 in yeast two-hybrid assays. (32)P radiolabelling of transfected 293T cells revealed that phosphorylation of PB1-F2 is sensitive to inhibitors of PKC and could be increased by the PKC activator PMA. ESI-MS analysis and cellular expression of PB1-F2 mutants identified the positions Ser-35 as the major and the Thr-27 as an alternative PKC phosphorylation site. Infection of MDCK cells with recombinant IAV(PR8) lacking these PKC sites abrogated phosphorylation of PB1-F2 in vivo. Furthermore, infection of primary human monocytes with mutant viruses lacking these PB1-F2 phosphorylation sites resulted in impaired caspase 3 activation and reduced progeny virus titres, indicating that the integrity of the identified phosphorylation sites is crucial for a cell-specific function of PB1-F2 during virus replication.


Assuntos
Apoptose , Vírus da Influenza A/patogenicidade , Monócitos/imunologia , Proteína Quinase C/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Fosforilação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
5.
Sci Rep ; 6: 27275, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265729

RESUMO

Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.


Assuntos
Ciclo-Oxigenase 2/genética , Proteína DEAD-box 58/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/genética , RNA Mensageiro/química , Tristetraprolina/genética , Células A549 , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Proteína DEAD-box 58/genética , Regulação para Baixo , Meia-Vida , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Estabilidade de RNA , RNA Viral/genética , Receptores Imunológicos , Tristetraprolina/metabolismo , Replicação Viral
6.
PLoS One ; 8(5): e63657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717460

RESUMO

Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority. Here we introduce LADANIA067 from the leaves of the wild black currant (Ribes nigrum folium) as a potent compound against IAV infections in vitro and in vivo. LADANIA067 treatment resulted in a reduction of progeny virus titers in cell cultures infected with prototype avian and human influenza virus strains of different subtypes. At the effective dose of 100 µg/ml the extract did not exhibit apparent harming effects on cell viability, metabolism or proliferation. Further, viruses showed no tendency to develop resistance to LADANIA067 when compared to amantadine that resulted in the generation of resistant variants after only a few passages. On a molecular basis the protective effect of LADANIA067 appears to be mainly due to interference with virus internalisation. In the mouse infection model LADANIA067 treatment reduces progeny virus titers in the lung upon intranasal application. In conclusion, an extract from the leaves of the wild black currant might be a promising source for the development of new antiviral compounds to fight IAV infections.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ribes/química , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Cães , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H7N7/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/uso terapêutico , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA