Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445651

RESUMO

Since the approval of the first monoclonal antibody (mAb) in 1986, a huge effort has been made to guarantee safety and efficacy of therapeutic mAbs. As of July 2021, 118 mAbs are approved for the European market for a broad range of clinical indications. In order to ensure clinical efficacy and safety aspects, (pre-)clinical experimental approaches evaluate the respective modes of action (MoA). In addition to antigen-specificity including binding affinity and -avidity, MoA comprise Fc-mediated effector functions such as antibody dependent cellular cytotoxicity (ADCC) and the closely related antibody dependent cellular phagocytosis (ADCP). For this reason, a variety of cell-based assays have been established investigating effector functions of therapeutic mAbs with different effector/target-cell combinations and several readouts including Fcγ receptor (FcγR)-mediated lysis, fluorescence, or luminescence. Optimized FcγR-mediated effector functions regarding clinical safety and efficacy are addressed with modification strategies such as point mutations, altered glycosylation patterns, combination of different Fc subclasses (cross isotypes), and Fc-truncation of the mAb. These strategies opened the field for a next generation of therapeutic mAbs. In conclusion, it is of major importance to consider FcγR-mediated effector functions for the efficacy of therapeutic mAbs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Receptores Fc/metabolismo , Animais , Humanos , Imunoterapia , Receptores Fc/genética , Receptores Fc/imunologia
2.
Eur J Immunol ; 49(7): 1117-1126, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002172

RESUMO

The first-in-human clinical trial of the CD28-specific monoclonal antibody (mAb) TGN1412 resulted in a life-threatening cytokine release syndrome. Although TGN1412 was designed as IgG4, known for weak Fc:Fcγ receptor (FcγR) interactions, these interactions contributed to TGN1412-induced T-cell activation. Using cell lines (TFs) expressing human FcγRI, -IIa, -IIb, or -III, we show that TGN1412 and TGN1412 as IgG1 and IgG2 are bound by FcγRs as it can be deduced from literature. However, upon coculture of TGN1412-decorated T cells with TFs or human primary blood cells, we observed that binding capacities by FcγRs do not correlate with the strength of the mediated effector function. FcγRIIa and FcγRIIb, showing no or very minor binding to TGN1412, mediated strongest T cell proliferation, while high-affinity FcγRI, exhibiting strong TGN1412 binding, mediated hardly any T-cell proliferation. These findings are of biological relevance because we show that FcγRI binds TGN1412, thus prevents binding to FcγRIIa or FcγRIIb, and consequently disables T-cell proliferation. In line with this, FcγRI- FcγRII+ but not FcγRI+ FcγRII+ monocytes mediate TGN1412-induced T-cell proliferation. Collectively, by using TGN1412 as example, our results indicate that binding of monomeric IgG subclasses does not predict the FcγR-mediated effector function, which has major implications for the design of therapeutic mAbs.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Síndrome da Liberação de Citocina/imunologia , Imunoglobulina G/metabolismo , Imunoterapia/efeitos adversos , Monócitos/imunologia , Receptores de IgG/metabolismo , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD28/antagonistas & inibidores , Linhagem Celular , Proliferação de Células , Síndrome da Liberação de Citocina/etiologia , Humanos , Ativação Linfocitária , Camundongos , Ligação Proteica , Receptores de IgG/genética
3.
Artigo em Alemão | MEDLINE | ID: mdl-33095280

RESUMO

Currently, extract-based therapeutic allergens from natural allergen sources (e.g., house dust mites, tree and grass pollen) are used for allergen-specific immunotherapy (AIT), the only causative therapy that can exhibit positive disease-modifying effects by tolerance induction and prevention of disease progression. Due to variations in the natural composition of the starting materials and different manufacturing processes, there are variations in protein content, allergen composition, and allergenic activity of similar products, which poses specific challenges for their standardization. The identification of the nucleotide sequences of allergenic proteins led to the development of molecular AIT approaches. This allows for the application of exclusively relevant structures as chemically synthesized peptides, recombinant single allergens, or molecules with hypoallergenic properties that potentially allow for an up-dosing with higher allergen-doses without allergic side effects leading more quickly to effective cumulative doses. Further modifications of AIT preparations to improve allergenic and immunogenic properties may be achieved, e.g., by including the use of virus-like particles (VLPs). To date, the herein described therapeutic approaches have been tested in clinical trials only. This article provides an overview of published molecular approaches for allergy treatment used in clinical AIT studies. Their added value and challenges compared to established therapeutic allergens are discussed. The aim of these approaches is to develop highly effective and well-tolerated AIT preparations with improved patient acceptance and adherence.


Assuntos
Alérgenos , Hipersensibilidade , Dessensibilização Imunológica , Alemanha , Humanos , Hipersensibilidade/terapia , Imunoterapia , Peptídeos
4.
Mol Cell Neurosci ; 59: 106-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534009

RESUMO

Neurotransmitter release as well as the structural and functional dynamics of the presynaptic active zone is controlled by proteinaceous components. Here we describe for the first time an experimental approach for the isolation of the presynaptic active zone from individual mouse brains, a prerequisite for understanding the functional inventory of the presynaptic protein network and for the later analysis of changes occurring in mutant mice. Using a monoclonal antibody against the ubiquitous synaptic vesicle protein SV2 we immunopurified synaptic vesicles docked to the presynaptic plasma membrane. Enrichment studies by means of Western blot analysis and mass spectrometry identified 485 proteins belonging to an impressive variety of functional categories. Our data suggest that presynaptic active zones represent focal hot spots that are not only involved in the regulation of neurotransmitter release but also in multiple structural and functional alterations the adult nerve terminal undergoes during neural activity in adult CNS. They furthermore open new avenues for characterizing alterations in the active zone proteome of mutant mice and their corresponding controls, including the various mouse models of neurological diseases.


Assuntos
Encéfalo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteoma , Animais , Camundongos , Camundongos Endogâmicos C57BL , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA