Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119250, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864945

RESUMO

Land-use policies aim at enhancing the sustainable use of natural resources. The Triad approach has been suggested to balance the social, ecological, and economic demands of forested landscapes. The core idea is to enhance multifunctionality at the landscape level by allocating landscape zones with specific management priorities, i.e., production (intensive management), multiple use (extensive management), and conservation (forest reserves). We tested the efficiency of the Triad approach and identified the respective proportion of above-mentioned zones needed to enhance multifunctionality in Finnish forest landscapes. Through a simulation and optimization framework, we explored a range of scenarios of the three zones and evaluated how changing their relative proportion (each ranging from 0 to 100%) impacted landscape multifunctionality, measured by various biodiversity and ecosystem service indicators. The results show that maximizing multifunctionality required around 20% forest area managed intensively, 50% extensively, and 30% allocated to forest reserves. In our case studies, such landscape zoning represented a good compromise between the studied multifunctionality components and maintained 61% of the maximum achievable net present value (i.e., total timber economic value). Allocating specific proportion of the landscape to a management zone had distinctive effects on the optimized economic or multifunctionality values. Net present value was only moderately impacted by shifting from intensive to extensive management, while multifunctionality benefited from less intensive and more diverse management regimes. This is the first study to apply Triad in a European boreal forest landscape, highlighting the usefulness of this approach. Our results show the potential of the Triad approach in promoting forest multifunctionality, as well as a strong trade-off between net present value and multifunctionality. We conclude that simply applying the Triad approach does not implicitly contribute to an overall increase in forest multifunctionality, as careful forest management planning still requires clear landscape objectives.


Assuntos
Ecossistema , Taiga , Conservação dos Recursos Naturais/métodos , Florestas , Biodiversidade
2.
J Environ Manage ; 256: 109950, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818748

RESUMO

Biodiversity loss is accelerating because of unceasing human activity and land clearing for development projects (urbanisation, transport infrastructure, mining and quarrying …). Environmental policy-makers and managers in different countries worldwide have proposed the mitigation hierarchy to ensure the goal of "no net loss (NNL) of biodiversity" and have included this principle in environmental impact assessment processes. However, spatial configuration is hardly ever taken into account in the mitigation hierarchy even though it would greatly benefit from recent developments in habitat connectivity modelling incorporating landscape graphs. Meanwhile, national, European and international commitments have been made to maintain and restore the connectivity of natural habitats to face habitat loss and fragmentation. Our objective is to revisit the mitigation hierarchy and to suggest a methodological framework for evaluating the environmental impact of development projects, which includes a landscape connectivity perspective. We advocate the use of the landscape connectivity metric equivalent connectivity (EC), which is based on the original concept of "amount of reachable habitat". We also refine the three main levels of the mitigation hierarchy (impact avoidance, reduction and offset) by integrating a landscape connectivity aspect. We applied this landscape connectivity framework to a simple, virtual habitat network composed of 14 patches of varying sizes. The mitigation hierarchy was addressed through graph theory and EC and several scenarios of impact avoidance, reduction and compensation were tested. We present the benefits of a habitat connectivity framework for the mitigation hierarchy, provide practical recommendations to implement this framework and show its use in real case studies that had previously been restricted to one or two steps of the mitigation hierarchy. We insist on the benefits of a habitat connectivity framework for the mitigation hierarchy and for ecological equivalence assessment. In particular, we demonstrate why it is risky to use a standard offset ratio (the ratio between the amount of area negatively impacted and the compensation area) without performing a connectivity analysis that includes the landscape surrounding the zone impacted by the project. We also discuss the limitations of the framework and suggest potential improvements. Lastly, we raise concerns about the need to rethink the strategy for biodiversity protection. Given that wild areas and semi-natural habitats are becoming scarcer, in particular in industrialised countries, we are convinced that the real challenge is to quickly reconsider the current vision of "developing first, then assessing the ecological damage", and instead urgently adopt an upstream protection strategy that would identify and protect the land that must not be lost if we wish to maintain viable species populations and ecological corridors allowing them the mobility necessary to their survival.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Política Ambiental
3.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30957401

RESUMO

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Assuntos
Biodiversidade , Produtos Agrícolas , Ecossistema , Agricultura , Animais , Europa (Continente) , Polinização
4.
Sustain Sci ; 16(4): 1397-1403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841582

RESUMO

COVID-19 crisis has emphasized how poorly prepared humanity is to cope with global disasters. However, this crisis also offers a unique opportunity to move towards a more sustainable and equitable future. Here, we identify the underlying environmental, social, and economic chronic causes of the COVID-19 crisis. We argue in favour of a holistic view to initiate a socio-economic transition to improve the prospects for global sustainability and human well-being. Alternative approaches to "Business-As-Usual" for guiding the transition are already available for implementation. Yet, to ensure a successful and just transition, we need to change our priorities towards environmental integrity and well-being. This necessarily means environmental justice, a different worldview and a closer relationship with nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA