Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 49(19): 11145-11166, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634819

RESUMO

Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Biologia Computacional/métodos , Citocromos b/genética , Citocromos b/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transativadores/genética , Transativadores/metabolismo
2.
Nucleic Acids Res ; 44(12): 5785-97, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27257059

RESUMO

Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocromos b/genética , Citocromos b/metabolismo , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genoma Mitocondrial , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Fosforilação Oxidativa , Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Microbiol ; 75(2): 474-88, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20025673

RESUMO

The Oxa1/YidC/Alb3 family plays a key role in the biogenesis of the respiratory and photosynthetic complexes in bacteria and organelles. In Saccharomyces cerevisiae, Oxa1 mediates the co-translational insertion of mitochondrially encoded subunits of the three respiratory complexes III, IV and V within the inner membrane and also controls a late step in complex V assembly. No crystal structure of YidC or Oxa1 is available and little is known about the respective role of each transmembrane segment (TM) and hydrophilic loop of this polytopic protein on the biogenesis of the three complexes. Here, we have generated a collection of random point mutations located in the hydrophobic and hydrophilic domains of the protein and characterized their effects on the assembly of the three respiratory complexes. Our results show mutant-dependent differential effects, particularly on complex V. In order to identify tertiary interactions within Oxa1, we have also isolated revertants carrying second-site compensatory mutations able to restore respiration. This analysis reveals the existence of functional interactions between TM2 and TM5, TM4 and TM5 as well as between TM4 and loop 2, highlighting the key position of TM4 and TM5 in the Oxa1 protein.


Assuntos
Análise Mutacional de DNA/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Sítios de Ligação , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Immunoblotting , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Consumo de Oxigênio/genética , Fenótipo , Fotossíntese/genética , Biossíntese de Proteínas , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Appl Environ Microbiol ; 77(6): 2088-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278281

RESUMO

The mutation G143A in the inhibitor binding site of cytochrome b confers a high level of resistance to fungicides targeting the bc(1) complex. The mutation, reported in many plant-pathogenic fungi, has not evolved in fungi that harbor an intron immediately after the codon for G143 in the cytochrome b gene, intron bi2. Using Saccharomyces cerevisiae as a model organism, we show here that a codon change from GGT to GCT, which replaces glycine 143 with alanine, hinders the splicing of bi2 by altering the exon/intron structure needed for efficient intron excision. This lowers the levels of cytochrome b and respiratory growth. We then investigated possible bypass mechanisms that would restore the respiratory fitness of a resistant mutant. Secondary mutations in the mitochondrial genome were found, including a point mutation in bi2 restoring the correct exon/intron structure and the deletion of intron bi2. We also found that overexpression of nuclear genes MRS2 and MRS3, encoding mitochondrial metal ion carriers, partially restores the respiratory growth of the G143A mutant. Interestingly, the MRS3 gene from the plant-pathogenic fungus Botrytis cinerea, overexpressed in an S. cerevisiae G143A mutant, had a similar compensatory effect. These bypass mechanisms identified in yeast could potentially arise in pathogenic fungi.


Assuntos
Citocromos b/genética , Farmacorresistência Fúngica/genética , Íntrons/genética , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Éxons/genética , Mutação , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/efeitos dos fármacos
5.
Biochim Biophys Acta ; 1793(1): 60-70, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18522806

RESUMO

Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Transporte de Elétrons , Escherichia coli/metabolismo , Evolução Molecular , Humanos , Saccharomyces cerevisiae/metabolismo
6.
PLoS Comput Biol ; 5(6): e1000409, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19521515

RESUMO

Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31 genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties. Thus, mRNAs of modules expressed "early" are mostly translated in the vicinity of mitochondria under the control of the Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections between nuclear transcription and cytoplasmic site-specific translation.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Modelos Genéticos , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Algoritmos , Análise por Conglomerados , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Elementos Reguladores de Transcrição , Regulon , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118661, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987792

RESUMO

Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.


Assuntos
Artemisininas/farmacologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Artemisininas/química , Regulação para Baixo , Complexo III da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEBS Lett ; 582(23-24): 3489-93, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18804471

RESUMO

Pleiotropic effects in the oxidative phosphorylation pathway (OXPHOS) were investigated in yeast respiratory mutants and in cells from patients with OXPHOS genetic alterations. The main differences between yeast and human cells were (1) the site of the primary defect that was associated with pleiotropic effects, yeast complex V and human complex IV, and (2) the nature of the complex targeted by the secondary effect, yeast complex IV and human complex I. The pleiotropic effects did not correlate with the organization of OXPHOS into supercomplexes and their functional consequences appeared to be a slowing down of the respiratory chain in order to avoid either an increase in the membrane potential or the accumulation of reduced intermediary components of the respiratory chain.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fosforilação Oxidativa , Saccharomyces cerevisiae/enzimologia , Adulto , Respiração Celular/genética , Células Cultivadas , Criança , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Mutação , Saccharomyces cerevisiae/genética
9.
Genetics ; 175(3): 1105-15, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17194787

RESUMO

Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this mutation is compensated for by overexpressing RMD9. We show that Rmd9p is an extrinsic membrane protein facing the matrix side of the mitochondrial inner membrane. Its deletion leads to a pleiotropic effect on respiratory complex biogenesis. The steady-state level of all the mitochondrial mRNAs encoding respiratory complex subunits is strongly reduced in the Deltarmd9 mutant, and there is a slight decrease in the accumulation of two RNAs encoding components of the small subunit of the mitochondrial ribosome. Overexpressing RMD9 leads to an increase in the steady-state level of mitochondrial RNAs, and we discuss how this increase could suppress the oxa1 mutations and compensate for the membrane insertion defect of the subunits encoded by these mRNAs.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Respiração Celular/genética , Biologia Computacional , Citocromos/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Immunoblotting , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutagênese , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrofotometria
10.
Methods Mol Biol ; 432: 65-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370011

RESUMO

The mitochondrial oxidative phosphorylation involves five multimeric complexes imbedded in the inner membrane: complex I (Nicotinamide Adenine Dinucleotide (NADH) quinone oxidoreductase), II (succinate dehydrogenase), III (ubiquinol cytochrome c oxido reductase or bc1 complex), IV (cytochrome c oxidase), and V (ATP synthase). These respiratory complexes are conserved from the yeast Saccharomyces cerevisiae to human with the exception of complex I, which is replaced by three NADH dehydrogenases in S. cerevisiae. Here, we provide several protocols allowing an exhaustive characterization of each yeast complex: this chapter describes procedures from mitochondria preparation to measurement of the activity of each complex and analysis of their subunit composition and provides information on the interactions between different complexes.


Assuntos
Mitocôndrias/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteômica , Ecocardiografia/métodos , Indicadores e Reagentes , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Mitocôndrias/ultraestrutura , Mutação
11.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700138

RESUMO

The mitochondrial genomes of Saccharomyces cerevisiae strains contain up to 13 introns. An intronless recombinant genome introduced into the nuclear background of S. cerevisiae strain W303 gave the S. cerevisiae CW252 strain, which is used to model mitochondrial respiratory pathologies. The complete sequence of this mitochondrial genome was obtained using a hybrid assembling methodology.

12.
FEBS Lett ; 581(3): 479-82, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17240372

RESUMO

This study focused on the stability of UCP2 (uncoupling protein 2), a mitochondrial carrier located in the inner membrane of mitochondrion. UCP2 is very unstable, with a half-life close to 30min, compared to 30h for its homologue UCP1, a difference that may highlight different physiological functions. Heat production by UCP1 in brown adipocytes is generally a long and adaptive phenomenon, whereas control of mitochondrial ROS by UCP2 needs more subtle regulation. We show that a mutation in UCP2 shown to modify its activity, actually decreases its stability.


Assuntos
Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , DNA/genética , Estabilidade de Medicamentos , Meia-Vida , Humanos , Canais Iônicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 2
13.
BMC Syst Biol ; 11(1): 67, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693620

RESUMO

BACKGROUND: Large sets of protein-protein interaction data coming either from biological experiments or predictive methods are available and can be combined to construct networks from which information about various cell processes can be extracted. We have developed an in silico approach based on these information to model the biogenesis of multiprotein complexes in the yeast Saccharomyces cerevisiae. RESULTS: Firstly, we have built three protein interaction networks by collecting the protein-protein interactions, which involved the subunits of three complexes, from different databases. The protein-protein interactions come from different kinds of biological experiments or are predicted. We have chosen the elongator and the mediator head complexes that are soluble and exhibit an architecture with subcomplexes that could be functional modules, and the mitochondrial bc 1 complex, which is an integral membrane complex and for which a late assembly subcomplex has been described. Secondly, by applying a clustering strategy to these networks, we were able to identify subcomplexes involved in the biogenesis of the complexes as well as the proteins interacting with each subcomplex. Thirdly, in order to validate our in silico results for the cytochrome bc1 complex we have analysed the physical interactions existing between three subunits by performing immunoprecipitation experiments in several genetic context. CONCLUSIONS: For the two soluble complexes (the elongator and mediator head), our model shows a strong clustering of subunits that belong to a known subcomplex or module. For the membrane bc 1 complex, our approach has suggested new interactions between subunits in the early steps of the assembly pathway that were experimentally confirmed. Scripts can be downloaded from the site: http://bim.igmors.u-psud.fr/isips .


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química
14.
Genetics ; 169(3): 1379-89, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15545650

RESUMO

A causal link between deficiency of the cytochrome respiratory pathway and life span was previously shown in the filamentous fungus Podospora anserina. To gain more insight into the relationship between mitochondrial function and life span, we have constructed a strain carrying a thermosensitive mutation of the gene oxa1. OXA1 is a membrane protein conserved from bacteria to human. The mitochondrial OXA1 protein is involved in the assembly/insertion of several respiratory complexes. We show here that oxa1 is an essential gene in P. anserina. The oxa1(ts) mutant exhibits severe defects in the respiratory complexes I and IV, which are correlated with an increased life span, a strong induction of the alternative oxidase, and a reduction in ROS production. However, there is no causal link between alternative oxidase level and life span. We also show that in the oxa1(ts) mutant, the extent of the defects in complexes I and IV and the life-span increase depends on the essential gene rmp1. The RMP1 protein, whose function is still unknown, can be localized in the mitochondria and/or the cytosolic compartment, depending on the developmental stage. We propose that the RMP1 protein could be involved in the process of OXA1-dependent protein insertion.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podospora/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , DNA Complementar/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/genética , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos , Podospora/crescimento & desenvolvimento , Mapeamento por Restrição
15.
Gene ; 354: 53-7, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-15908145

RESUMO

Oxa1p is a key component of the machinery for the insertion of membrane proteins in mitochondria, and in the yeast Saccharomyces cerevisiae, the deletion of OXA1 impairs the biogenesis of the three respiratory complexes of dual genetic origin. Oxa1p is formed from three domains located in the intermembrane space, the inner membrane and the mitochondrial matrix. We have isolated a high copy suppressor able to partially compensate for the respiratory deficiency caused by a large deletion of the matrix domain. We show that the suppressor gene corresponds to the nuclear transcriptional activator Hap4p which is known to regulate respiratory functions.


Assuntos
Fator de Ligação a CCAAT/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Western Blotting , Fator de Ligação a CCAAT/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Consumo de Oxigênio/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
16.
Dis Model Mech ; 8(6): 509-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26035862

RESUMO

Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as 'petite-positivity'), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.


Assuntos
Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/terapia , Saccharomyces cerevisiae/metabolismo , Animais , DNA Fúngico/metabolismo , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Pesquisa Translacional Biomédica
17.
Microb Cell ; 1(1): 43-44, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28357209

RESUMO

Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS), which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojic et al. [Cell Metabolism (2013) 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

18.
Biochimie ; 100: 27-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24262604

RESUMO

Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cell Metab ; 18(4): 567-77, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055101

RESUMO

Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders.


Assuntos
Trifosfato de Adenosina/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos de ATP Sintetase/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Mitochondrion ; 11(3): 391-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21168530

RESUMO

Starting from a transcriptome based study of the spatio-temporal expression of yeast genes encoding mitochondrial proteins of unknown function, we have identified the gene BCA1 (YLR077W). A FISH analysis showed that the BCA1 mRNA co-localized with the mitochondrial network. Cellular fractionation revealed that Bca1 is bound to the mitochondrial inner-membrane and protrudes into the inter-membrane space. We show that Bca1 controls an early step in complex III assembly and that the supra-molecular organization of Bca1 is dependent upon the assembly level of complex III. Thus, Bca1 is a novel assembly factor for the respiratory complex III.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Perfilação da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Hibridização in Situ Fluorescente , Membranas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA