Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2016): 20232666, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351808

RESUMO

Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.


Assuntos
Ecologia , Neoplasias , Humanos , Animais , Comportamento Animal , Animais Selvagens , Fatores de Risco
2.
Mol Ecol ; 33(6): e17283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288572

RESUMO

Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.


Assuntos
Corticosterona , Passeriformes , Animais , Feminino , Corticosterona/farmacologia , Corticosterona/análise , Metilação de DNA , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA
3.
BMC Cancer ; 24(1): 709, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853244

RESUMO

BACKGROUND: Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS: The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION: The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Detecção Precoce de Câncer/métodos , França , Biópsia Líquida/métodos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Estudos Prospectivos
4.
Med Sci (Paris) ; 40(4): 343-350, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38651959

RESUMO

Cancer is an inevitable collateral problem inherent in the evolution of multicellular organisms, which appeared at the end of the Precambrian. Faced to this constraint, a range of diverse anticancer defenses has evolved across the animal kingdom. Today, investigating how animal organisms, especially those of large size and long lifespan, manage cancer-related issues has both fundamental and applied outcomes, as it could inspire strategies for preventing or treating human cancers. In this article, we begin by presenting the conceptual framework for understanding evolutionary theories regarding the development of anti-cancer defenses. We then present a number of examples that have been extensively studied in recent years, including naked mole rats, elephants, whales, placozoa, xenarthras (such as sloths, armadillos and anteaters) and bats. The contributions of comparative genomics to understanding evolutionary convergences are also discussed. Finally, we emphasize that natural selection has also favored anti-cancer adaptations aimed at avoiding mutagenic environments, for example by maximizing immediate reproductive efforts in the event of cancer. Exploring these adaptive solutions holds promise for identifying novel approaches to improve human health.


Title: Évolution de la résistance au cancer dans le monde animal. Abstract: Le cancer est un dommage collatéral inévitable inhérent à l'évolution des organismes multicellulaires, apparus à la fin du Précambrien. L'exploration de la manière dont les animaux, en particulier ceux de grande taille et de longue durée de vie, font face au cancer, comporte des enjeux à la fois fondamentaux et appliqués. Dans cet article, nous commençons par présenter le cadre conceptuel nécessaire pour comprendre les théories qui traitent de l'évolution des défenses anti-cancéreuses. Nous présentons ensuite un certain nombre d'exemples, notamment les rats-taupes nus, les éléphants, les baleines, les xénarthres (paresseux, tatous et fourmiliers), les chauves-souris et les placozoaires1. Les contributions de la génomique comparative à la compréhension des convergences évolutives sont également abordées. Enfin, nous indiquons que la sélection naturelle a également favorisé des adaptations visant à éviter les zones mutagènes, par exemple, ou à maximiser l'effort de reproduction immédiat en cas de cancer. L'exploration de ces solutions, intéressante conceptuellement, pourrait aussi permettre d'envisager de nouvelles approches thérapeutiques pour la santé humaine.


Assuntos
Evolução Biológica , Neoplasias , Animais , Neoplasias/genética , Neoplasias/patologia , Humanos , Resistência à Doença/genética , Resistência à Doença/fisiologia , Seleção Genética , Ratos-Toupeira/fisiologia , Ratos-Toupeira/genética , Elefantes/genética
5.
Front Psychiatry ; 15: 1286135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435971

RESUMO

Introduction: Toxoplasma gondii (TG) is a common protozoan parasite infecting approximately one third of the human population. Animal studies have shown that this parasite can manipulate its host behavior. Based on this, human studies have assessed if TG can be involved in mental health disorders associated with important behavioral modifications such as schizophrenia. However, results have been discrepant. Given that TG has a strong impact on fear and risk-taking processes in animal studies and that fear and risk-taking behaviors are associated with the human stress response, we tested whether glucocorticoid biomarkers (salivary and hair) differ in people with schizophrenia and controls as a function of TG status. Methods: We measured TG antibodies in blood samples, as well as salivary and hair glucocorticoid levels in 226 people with schizophrenia (19.9% women, mean age = 39 years old) and 129 healthy individuals (controls) (45.7% women, mean age = 41 years old). Results: The results showed that people with schizophrenia infected with TG presented significantly higher hair glucocorticoid concentrations than non-infected people with schizophrenia. This effect was not found in control participants. No effect was observed for salivary glucocorticoid levels. Additionally, there were no associations between TG infection and positive psychotic symptoms nor impulsivity. Discussion: These results show that people with schizophrenia present high levels of hair glucocorticoid levels only when they are infected with TG. Further studies performed in populations suffering from other mental health disorders are needed to determine if this effect is specific to schizophrenia, or whether it is generalized across mental health disorders.

6.
Evol Appl ; 17(3): e13670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468711

RESUMO

Since the emergence of a transmissible cancer, devil facial tumour disease (DFT1), in the 1980s, wild Tasmanian devil populations have been in decline. In 2016, a second, independently evolved transmissible cancer (DFT2) was discovered raising concerns for survival of the host species. Here, we applied experimental and modelling frameworks to examine competition dynamics between the two transmissible cancers in vitro. Using representative cell lines for DFT1 and DFT2, we have found that in monoculture, DFT2 grows twice as fast as DFT1 but reaches lower maximum cell densities. Using co-cultures, we demonstrate that DFT2 outcompetes DFT1: the number of DFT1 cells decreasing over time, never reaching exponential growth. This phenomenon could not be replicated when cells were grown separated by a semi-permeable membrane, consistent with exertion of mechanical stress on DFT1 cells by DFT2. A logistic model and a Lotka-Volterra competition model were used to interrogate monoculture and co-culture growth curves, respectively, suggesting DFT2 is a better competitor than DFT1, but also showing that competition outcomes might depend on the initial number of cells, at least in the laboratory. We provide theories how the in vitro results could be translated to observations in the wild and propose that these results may indicate that although DFT2 is currently in a smaller geographic area than DFT1, it could have the potential to outcompete DFT1. Furthermore, we provide a framework for improving the parameterization of epidemiological models applied to these cancer lineages, which will inform future disease management.

7.
Evol Appl ; 17(8): e13763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100750

RESUMO

Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.

8.
Sci Rep ; 14(1): 11650, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773187

RESUMO

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Assuntos
Evolução Molecular , Mamíferos , Neoplasias , Filogenia , Animais , Mamíferos/genética , Neoplasias/genética , Humanos , Seleção Genética , Oncogenes/genética , Genes Supressores de Tumor , Predisposição Genética para Doença
9.
Sci Total Environ ; 913: 169491, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154641

RESUMO

The presence of doubly uniparental inheritance (DUI) in bivalves represents a unique mode of mitochondrial transmission, whereby paternal (male-transmitted M-type) and maternal (female-transmitted F-type) haplotypes are transmitted to offspring separately. Male embryos retain both haplotypes, but the M-type is selectively removed from females. Due to the presence of heteroplasmy in males, mtDNA can recombine resulting in a 'masculinized' haplotype referred to as Mf-type. While mtDNA recombination is usually rare, it has been recorded in multiple mussel species across the Northern Hemisphere. Given that mitochondria are the powerhouse of the cell, different mtDNA haplotypes may have different selective advantages under diverse environmental conditions. This may be particularly important for sperm fitness and fertilization success. In this study we aimed to i) determine the presence, prevalence of the Mf-type in Australian blue mussels (Mytilus sp.) and ii) investigate the effect of Mf-mtDNA on sperm performance (a fitness correlate). We found a high prevalence of recombined mtDNA (≈35 %) located within the control region of the mitochondrial genome, which occurred only in specimens that contained Southern Hemisphere mtDNA. The presence of two female mitotypes were identified in the studied mussels, one likely originating from the Northern Hemisphere, and the other either representing the endemic M. planulatus species or introduced genotypes from the Southern Hemisphere. Despite having recombination events present in a third of the studied population, analysis of sperm performance indicated no difference in fertilization success related to mitotype.


Assuntos
Bivalves , Mytilus edulis , Animais , Masculino , Feminino , Austrália , Sêmen , Mitocôndrias , DNA Mitocondrial , Bivalves/genética , Fertilização , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA