Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Molecules ; 26(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576988

RESUMO

Antipruritic effects of kappa opioid receptor (KOR) agonists have been shown in rodent models of acute and chronic scratching (itchlike behavior). Three KOR agonists, nalfurafine, difelikefalin, and nalbuphine, are in clinical studies for antipruritic effects in chronic itch of systemic and skin diseases. Nalfurafine (in Japan) and difelikefalin (in the USA) were approved to be used in the treatment of chronic itch in hemodialysis patients. The FDA-approved nalbuphine has been used in clinic for over 40 years, and it is the only narcotic agonist that is not scheduled. We aimed to study (a) antiscratch activity of nalbuphine against TAT-HIV-1 protein (controls HIV transcription)-, deoxycholic acid (DCA, bile acid)-, and chloroquine (CQ)-induced scratching in a mouse model of acute itch; and (b) whether the effect of nalbuphine is produced via KORs. First, dose-responses were developed for pruritogens. Mice were pretreated with nalbuphine (0.3-10 mg/kg) and then a submaximal dose of pruritogens were administered and the number of scratching bouts was counted. To study if the antiscratch effect of nalbuphine is produced via KOR, we used KOR knock out mice and pharmacologic inhibition of KORs using nor-binaltorphimine, a KOR antagonist. For this aim, we used CQ as a pruritogen. We found that: (a) TAT-HIV-1 protein elicits scratching in a dose-dependent manner; (b) nalbuphine inhibits scratching induced by TAT-HIV-1, DCA, and CQ dose-dependently; and (c) nalbuphine inhibits scratching induced by CQ through KORs. In conclusion, nalbuphine inhibits scratching elicited by multiple pruritogens.


Assuntos
Antipruriginosos/farmacologia , Nalbufina/farmacologia , Prurido/prevenção & controle , Receptores Opioides kappa/agonistas , Animais , Antipruriginosos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Cloroquina/toxicidade , Ácido Desoxicólico/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Nalbufina/uso terapêutico , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Prurido/induzido quimicamente , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade
2.
Acta Pharmacol Sin ; 39(5): 770-773, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29542680

RESUMO

In this brief review we summarize the current fndings relative to the discovery of a small peptide ligand, phoenixin (PNX). Using a bioinformatic approach, two novel peptides PNX-14 and PNX-20 containing 14 and 20 amino acids, respectively, were isolated from diverse tissues including the brain, heart, lung and stomach. Mass spectrometry analysis identified a major and minor peak corresponding to PNX-14 and PNX-20, in rat or mouse spinal cord extracts. With the use of a rabbit polyclonal antiserum, phoenixin immunoreactivity (irPNX) was detected in discrete areas of the rodent brain including several hypothalamic subnuclei and dorsal motor nucleus of the vagus. In addition, irPNX was detected in a population of sensory ganglion cells including dorsal root ganglion, nodose ganglion and trigeminal ganglion, and in cell processes densely distributed to the superficial layers of the dorsal horn, nucleus of the solitary tract and spinal trigeminal tract. irPNX cell processes were also detected in the skin and myenteric plexus, suggesting a brain-gut and/or brain-skin connection. Pharmacological studies show that PNX-14 injected subcutaneously to the nape of the neck of mice provoked dose-dependent repetitive scratching bouts directed to the back of the neck with the hindpaws. Our result suggests that the peptide PNX-14 and/or PNX-20, may serve as one of the endogenous signal molecules transducing itch sensation. Additionally, results from other laboratories show that exogenous PNX may affect a number of diverse behaviors such as memory formation, depression, reproduction, food-intake and anxiolytic-like behaviors.


Assuntos
Hormônios Hipotalâmicos/fisiologia , Hormônios Peptídicos/fisiologia , Peptídeos/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Hormônios Hipotalâmicos/administração & dosagem , Hormônios Hipotalâmicos/química , Hipotálamo/metabolismo , Memória/fisiologia , Plexo Mientérico/metabolismo , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/química , Peptídeos/administração & dosagem , Peptídeos/química , Prurido/metabolismo , Medula Espinal/metabolismo
3.
J Neurosci Res ; 93(3): 466-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25354468

RESUMO

This study tested the hypothesis that repetitive scratching provoked by two known pruritogens, compound 48/80 and 5'-guanidinonaltrindole (GNTI), is accompanied by activation of microglial cells in the mouse spinal cord. Immunohistochemical studies revealed that the complement receptor 3, also known as cluster determinant 11b (CD11b), a cell surface marker of microglial cells, was upregulated in the spinal cord 10-30 min after a subcutaneous (s.c.) injection of compound 48/80 (50 µg/100 µl) or GNTI (0.3 mg/kg) to the back of the mouse neck. Numerous intensely labeled CD11b-immunoreactive (CD11b-ir) cells, with the appearance of hypertrophic reactive microglia, were distributed throughout the gray and white matter. In contrast, weakly labeled CD11b-ir cells were distributed in the spinal cord from mice injected with saline. Western blots showed that CD11b expression levels were significantly increased in spinal cords of mice injected s.c. with either pruritogen, reached a peak response in about 30 min, and declined to about the basal level in the ensuing 60 min. In addition, phospho-p38 (p-p38) but not p38 levels were upregulated in spinal cords from mice injected with compound 48/80 or GNTI, with a time course parallel to that of CD11b expression. Pretreatment of the mice with nalfurafine (20 µg/kg; s.c.), a κ-opioid receptor agonist that has been shown to suppress scratching, reduced CD11b and p-p38 expression induced by either pruritogen. The results demonstrate, for the first time, that scratch behavior induced by the pruritogens GNTI and compound 48/80 is accompanied by a parallel activation of microglial cells in the spinal cord.


Assuntos
Comportamento Animal/fisiologia , Antígeno CD11b/metabolismo , Microglia/metabolismo , Prurido/metabolismo , Medula Espinal/metabolismo , Animais , Guanidinas , Masculino , Camundongos , Morfinanos , Fosforilação , Prurido/induzido quimicamente , Regulação para Cima , p-Metoxi-N-metilfenetilamina , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mol Imaging ; 12(1): 8-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23348787

RESUMO

The utility of PSVue 794 (PS794), a near-infrared fluorescent dye conjugated to a bis[zinc (II)-dipicolylamine] (Zn-DPA) targeting moiety, in imaging brain infarct was assessed in a rat middle cerebral artery occlusion-reperfusion model. Following reperfusion, 1 mM PS794 solution was administered intravenously via a tail vein. Fluorescence images were captured between 6 to 72 hours postinjection using a LI-COR Biosciences Pearl Imaging System. Strong fluorescence signals, which may represent the infarct core, were detected in the right hemisphere, ipsilateral to the injured site, and weaker signals in areas surrounding the core. In ischemia-reperfusion rats injected with a control dye not linked to a targeting agent, fluorescence was distributed diffusely throughout the brain. To address the issue of whether Zn-DPA targets apoptotic/necrotic cells, HT22 mouse hippocampal neurons were cultured in either Dulbecco's Modified Eagle's Medium, serum-deprived medium, Hank's Balanced Salt Solution, or L-glutamate (10 mM)-containing medium for up to 33 hours. Cells were then double-labeled with PSVue 480 (Zn-DPA conjugated to fluorescein isothiocyanate) and propidium iodide, which labels necrotic cells. Microscopic examination revealed that PS480 targeted apoptotic and necrotic cells. The result indicates that PS794 is applicable to in vivo imaging of brain infarct and that Zn-DPA selectively targets apoptotic/necrotic cells.


Assuntos
Corantes Fluorescentes/química , Infarto da Artéria Cerebral Média/patologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Reperfusão/métodos , Animais , Apoptose , Química Encefálica , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Corantes Fluorescentes/farmacocinética , Hipocampo/citologia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência , Necrose , Neuroimagem , Ratos , Ratos Sprague-Dawley
6.
Front Cell Neurosci ; 16: 880267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016833

RESUMO

Background: Acupuncture or electroacupuncture (EA) appears to be a potential treatment in acute clinical traumatic brain injury (TBI); however, it remains uncertain whether acupuncture affects post-TBI histone deacetylase (HDAC) expression or impacts other biochemical/neurobiological events. Materials and methods: We used behavioral testing, Western blot, and immunohistochemistry analysis to evaluate the cellular and molecular effects of EA at LI4 and LI11 in both weight drop-impact acceleration (WD)- and controlled cortical impact (CCI)-induced TBI models. Results: Both WD- and CCI-induced TBI caused behavioral dysfunction, increased cortical levels of HDAC1 and HDAC3 isoforms, activated microglia and astrocytes, and decreased cortical levels of BDNF as well as its downstream mediators phosphorylated-Akt and phosphorylated-GSK-3ß. Application of EA reversed motor, sensorimotor, and learning/memory deficits. EA also restored overexpression of HDAC1 and HDAC3, and recovered downregulation of BDNF-associated signaling in the cortex of TBI mice. Conclusion: The results strongly suggest that acupuncture has multiple benefits against TBI-associated adverse behavioral and biochemical effects and that the underlying mechanisms are likely mediated by targeting HDAC overexpression and aberrant BDNF-associated Akt/GSK-3 signaling.

7.
J Biol Chem ; 285(5): 2897-901, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19940116

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent and widespread calcium-mobilizing messenger, the properties of which have been most extensively described in sea urchin eggs. The molecular basis for calcium release by NAADP, however, is not clear and subject to controversy. Recent studies have provided evidence that members of the two-pore channel (TPC) family in mammals are the long sought after target channels for NAADP. Here, we show that the TPC3 gene, which has yet to be functionally characterized, is present throughout the deuterostome lineage but is a pseudogene in humans and other primates. We report the molecular cloning of the complete ancestral TPC gene family from the sea urchin and demonstrate that all three isoforms localize to acidic organelles to mediate NAADP-dependent calcium release. Our data highlight the functional divergence of this novel gene family during deuterostome evolution and provide further evidence that NAADP mediates calcium release from acidic stores through activation of TPCs.


Assuntos
Cálcio/metabolismo , NADP/análogos & derivados , Sequência de Aminoácidos , Animais , Clonagem Molecular , Humanos , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , NADP/metabolismo , Plasmídeos/metabolismo , Isoformas de Proteínas , Pseudogenes , Ouriços-do-Mar , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 285(48): 37133-7, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20876534

RESUMO

Accumulating evidence implicates nicotinic acid adenine dinucleotide phosphate (NAADP) in the control of Ca(2+)-dependent functions. Little, however, is known concerning its role in the vascular endothelium, a major regulator of blood pressure. Here, we show that NAADP acetoxymethyl ester (NAADP-AM), a cell-permeant NAADP analog, increases cytosolic Ca(2+) concentration in aortic endothelial cells. We demonstrate that these signals and those evoked by acetylcholine are blocked by disrupting acidic organelles with bafilomycin A1. In contrast, Ca(2+) signals in response to thrombin are only partially inhibited by bafilomycin A1 treatment, and those to ATP were insensitive, suggesting that recruitment of acidic stores is agonist-specific. We further show that NAADP-evoked Ca(2+) signals hyperpolarize endothelial cells and generate NO. Additionally, we demonstrate that NAADP dilates aortic rings in an endothelium- and NO-dependent manner. Finally, we show that intravenous administration of NAADP-AM into anesthetized rats decreases mean arterial pressure. Our data extend the actions of NAADP to the endothelium both in vitro and in vivo, pointing to a previously unrecognized role for this messenger in controlling blood pressure.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Endotélio Vascular/metabolismo , NADP/análogos & derivados , Animais , Sinalização do Cálcio/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Humanos , Macrolídeos/farmacologia , NADP/administração & dosagem , NADP/farmacologia , Ratos
9.
Nat Chem Biol ; 5(6): 421-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19430488

RESUMO

Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.


Assuntos
Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Células COS , Chlorocebus aethiops , Estrogênios/metabolismo , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ressonância Magnética Nuclear Biomolecular , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais
11.
Circ Res ; 104(3): 288-91, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19179659

RESUMO

We found that the selective stimulation of the intracellular, transmembrane G protein-coupled estrogen receptor (GPER), also known as GPR30, acutely lowers blood pressure after infusion in normotensive rats and dilates both rodent and human arterial blood vessels. Stimulation of GPER blocks vasoconstrictor-induced changes in intracellular calcium concentrations and vascular tone, as well as serum-stimulated cell proliferation of human vascular smooth muscle cells. Deletion of the GPER gene in mice abrogates vascular effects of GPER activation and is associated with visceral obesity. These findings suggest novel roles for GPER in protecting from cardiovascular disease and obesity.


Assuntos
Aterosclerose/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Estradiol/farmacologia , Feminino , Humanos , Masculino , Artéria Torácica Interna/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio , Vasodilatação/efeitos dos fármacos
12.
Gastroenterology ; 137(3): 1040-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19344720

RESUMO

BACKGROUND & AIMS: Sex hormones have been reported to modulate visceral hypersensitivity (VH). Estrogen regulates neurons not only by binding to estrogen receptors (ERalpha and ERbeta) to initiate transcription but also via the G-protein coupled receptor GPR30, which binds and rapidly mediates actions of estrogen. We examined the role of sex hormones in a VH model without colonic inflammation. METHODS: 5-Hydroxytryptophan (5HTP) was injected subcutaneously into awake female rats to induce VH; the 5HT3 antagonist (granisetron) or saline (control) were injected 30 minutes later. Immunohistochemistry was used to quantify calcitonin gene-related peptide-immunoreactive (CGRP-IR) neurons in the dorsal root ganglion (DRG). 5HTP-induced VH was evaluated in ovariectomized rats injected with 17beta-estradiol, progesterone, or both. ER alpha/beta agonist, GPR30 agonist, ER antagonist (ICI-182,780) or GPR30 antisense oligodeoxynucleotide were given to 5HTP-primed, estrogen-treated ovariectomized rats. RESULTS: Rats given 5HTP had increased VH that was inhibited by granisetron, accompanied by a decrease in CGRP-IR in the DRG. Ovariectomy eliminated 5HTP-induced VH, whereas estrogen and the combination of estrogen and progesterone, but not progesterone alone, restored the VH. The GPR30 agonist, but not the ERbeta agonist, rapidly restored VH. VH was preserved by coadministration of ICI-182,780 and estrogen but was absent after administration of the GPR30 antisense oligodeoxynucleotide. GPR30 colocalized with 5HT3 in DRG neurons; no significant inflammation occurred in colonic mucosa. CONCLUSIONS: In the absence of mucosal inflammation, estrogen can rapidly modulate 5HTP-induced VH. Loss of gonad hormones suppresses VH, whereas estrogen replacement restores it. Estrogen-mediated VH appears to act through GPR30.


Assuntos
5-Hidroxitriptofano , Estrogênios/fisiologia , Dor/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Vísceras , 5-Hidroxitriptofano/antagonistas & inibidores , Músculos Abdominais/fisiopatologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Eletromiografia , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/agonistas , Estrogênios/farmacologia , Feminino , Gânglios Espinais/metabolismo , Granisetron/farmacologia , Ovariectomia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Progesterona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Reflexo Abdominal , Antagonistas da Serotonina/farmacologia
13.
Anal Chem ; 82(16): 6770-4, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704365

RESUMO

Understanding of calcium signaling pathways in cells is essential for elucidating the mechanisms of both normal cell function and cancer development. Calcium messengers play the crucial role for intracellular Ca(2+) release. We propose a new approach to detecting the calcium second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) in cell extracts using surface-enhanced Raman spectroscopy (SERS). Currently available radioreceptor binding and enzymatic assays require extensive sample preparation and take more than 12 h. With a SERS sensor, NAADP can be detected in less than 1 min without any special sample preparation. To the best of our knowledge, this is the first demonstration of using SERS for calcium signaling applications.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , NADP/análogos & derivados , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , ADP-Ribose Cíclica/química , ADP-Ribose Cíclica/fisiologia , Ouro/química , Humanos , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/fisiologia , Nanopartículas Metálicas/química , NADP/análise , NADP/química , NADP/fisiologia , Sistemas do Segundo Mensageiro
14.
Biochem J ; 419(1): 91-7, 2 p following 97, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19090786

RESUMO

NAADP (nicotinic acid-adenine dinucleotide phosphate) is a potent Ca(2+)-mobilizing messenger that stimulates Ca(2+) release in a variety of cells. NAADP-sensitive Ca(2+) channels are thought to reside on acidic Ca(2+) stores and to be functionally coupled to IP(3) (inositol 1,4,5-trisphosphate) and/or ryanodine receptors located on the endoplasmic reticulum. Whether NAADP-sensitive Ca(2+) channels 'chatter' to other channels, however, is not clear. In the present study, we have used a cell-permeant NAADP analogue to probe NAADP-mediated responses in rat medulla oblongata neurons. NAADP-AM (NAADP-acetoxymethyl ester) evoked global cytosolic Ca(2+) signals in isolated neurons that were reduced in amplitude by removal of external Ca(2+), abolished by disruption of acidic compartments and substantially inhibited by blockade of ryanodine receptors. In rat medullary slices, NAADP-AM depolarized neurons from the nucleus ambiguus in the presence of intracellular EGTA, but not of the faster Ca(2+) chelator BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid]. Depolarization was also dependent upon extracellular Ca(2+), acidic stores and ryanodine receptors. In voltage-clamp mode, NAADP-AM induced an inward current with a reversal potential of approx. 0 mV. The results of the present study reveal the presence of acidic NAADP-sensitive Ca(2+) stores in medulla neurons, the mobilization of which results not only in global Ca(2+) signals but also in local signals that activate non-selective cation channels on the cell surface resulting in depolarization. Thus NAADP is capable of co-ordinating channels both within the cell interior and at the cell membrane representing a novel mechanism for excitation of central neurons.


Assuntos
Cálcio/metabolismo , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , NADP/análogos & derivados , Neurônios/metabolismo , Animais , Células Cultivadas , Eletrofisiologia , Bulbo , NADP/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
15.
Biochem J ; 422(3): 503-12, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19548879

RESUMO

NAADP (nicotinic acid-adenine dinucleotide phosphate) is an unusual second messenger thought to mobilize acidic Ca(2+) stores, such as lysosomes or lysosome-like organelles, that are functionally coupled to the ER (endoplasmic reticulum). Although NAADP-sensitive Ca(2+) stores have been described in neurons, the physiological cues that recruit them are not known. Here we show that in both hippocampal neurons and glia, extracellular application of glutamate, in the absence of external Ca(2+), evoked cytosolic Ca(2+) signals that were inhibited by preventing organelle acidification or following osmotic bursting of lysosomes. The sensitivity of both cell types to glutamate correlated well with lysosomal Ca(2+) content. However, interfering with acidic compartments was largely without effect on the Ca(2+) content of the ER or Ca(2+) signals in response to ATP. Glutamate but not ATP elevated cellular NAADP levels. Our results provide evidence for the agonist-specific recruitment of NAADP-sensitive Ca(2+) stores by glutamate. This links the actions of NAADP to a major neurotransmitter in the brain.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Ácido Glutâmico/farmacologia , NADP/análogos & derivados , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Técnicas In Vitro , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , NADP/metabolismo , Neuroglia/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
16.
J Neurosci Res ; 87(7): 1610-9, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19125412

RESUMO

The G protein-coupled receptor GPR30 has recently been identified as a nonnuclear estrogen receptor. Reverse transcriptase-polymerase chain reaction revealed expression of GPR30 mRNA in varying quantities in the rat spinal cord, dorsal root ganglia, nodose ganglia, trigeminal ganglia, hippocampus, brain stem, and hypothalamus. Immunohistochemical studies that used a rabbit polyclonal antiserum against the human GPR30 C-terminus revealed a fine network of GPR30-immunoreactive (irGPR30) cell processes in the superficial layers of the spinal cord; some of which extended into deeper laminae. A population of neurons in the dorsal horn and ventral horn were irGPR30. Dorsal root, nodose, and trigeminal ganglionic neurons displayed varying intensities of irGPR30. Positively labeled neurons were detected in the major pelvic ganglion, but not in the superior cervical ganglion. A population of chromaffin cells in the adrenal medulla was irGPR30, so were cells of the zona glomerulosa. Double-labeling the adrenal medulla with GPR30 antiserum and tyrosine hydroxylase antibody or phenylethanolamine-N-methyltransferase antiserum revealed that irGPR30 is expressed in the majority of tyrosine hydroxylase-positive chromaffin cells. Last, some of the myenteric ganglion cells were irGPR30. Tissues processed with preimmune serum resulted in no staining. Voltage-sensitive dye imaging studies showed that the selective GPR30 agonist G-1 (1, 10, and 100 nM) depolarized cultured spinal neurons in a concentration-dependent manner. Collectively, our result provides the first evidence that GPR30 is expressed in neurons of the dorsal and ventral horn as well as in sensory and autonomic neurons, and activation of GPR30 by the selective agonist G-1 depolarizes cultured spinal neurons.


Assuntos
Gânglios Autônomos/metabolismo , Gânglios Sensitivos/metabolismo , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Medula Espinal/metabolismo , Animais , Tronco Encefálico/metabolismo , Células Cultivadas , Células Cromafins/metabolismo , Ciclopentanos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Feniletanolamina N-Metiltransferase/metabolismo , Quinolinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Eur J Pharmacol ; 864: 172702, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568781

RESUMO

Chronic itch is one of the disturbing symptoms of inflammatory skin diseases. Kappa opioid receptor agonists are effective in suppressing scratching in mice against different pruritogens. Nalbuphine, a nonscheduled kappa opioid receptor agonist and mu opioid receptor antagonist, has been in clinical use for post-operative pain management since the 1980s and recently has been in clinical trials for chronic itch of prurigo nodularis (https://www.trevitherapeutics.com/nalbuphine). We studied whether nalbuphine is effective against chronic scratching induced by rostral neck application of 1-fluoro-2,4-dinitrobenzene (DNFB), an accepted mouse model of contact dermatitis to study pruritoceptive itch. Mice were treated once a week with either saline or nalbuphine 20 min before the third, fifth, seventh, and ninth sensitizations with DNFB and the number of scratching bouts was counted for 30 min. Skin samples from the neck of mice at week 4 were used to measure protein levels and mRNA expressions of chemokines and cytokines. Different sets of mice were used to study sedation and anhedonic-like behavior of nalbuphine. We found that: nalbuphine (a) antagonized scratching in a dose- and time-dependent manner without affecting locomotion, b) decreased IL-31, and increased anti-inflammatory IL-10, and c) induced more elevations in the levels of CCL2, CCL3, CCL12, CXCL1, CXCL2, CXCL9, CXCL10, IL-1ß, IL-16, TIMP-1, M-CSF, TREM-1 and M1-type macrophages compared to saline. Increases in chemokines and cytokines and M1 macrophages by nalbuphine suggest an inflammatory phase of healing in damaged skin due to scratching. Our data indicate that nalbuphine is an effective antipruritic in murine model of pruritoceptive itch.


Assuntos
Dermatite de Contato/tratamento farmacológico , Interleucina-10/metabolismo , Interleucinas/metabolismo , Nalbufina/farmacologia , Prurido/tratamento farmacológico , Receptores Opioides kappa/agonistas , Receptores Opioides mu/antagonistas & inibidores , Animais , Quimiocinas/metabolismo , Dermatite de Contato/imunologia , Dermatite de Contato/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Nalbufina/uso terapêutico , Prurido/imunologia , Prurido/metabolismo
18.
Endocrinology ; 149(4): 1773-85, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18162515

RESUMO

Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Ingestão de Alimentos , Metabolismo Energético , Pró-Opiomelanocortina/fisiologia , Receptores para Leptina/fisiologia , Animais , Composição Corporal , Fertilidade , Hiperinsulinismo/etiologia , Hiperfagia , Lactação , Masculino , Camundongos , Neuropeptídeo Y/fisiologia
19.
Peptides ; 29(5): 721-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18314227

RESUMO

Human endothelial cells express urotensin-II (U-II) as well as its receptor GPR14. Using microfluorimetric techniques, the effect of human U-II on cytosolic Ca2+ concentrations [Ca2+]i in cultured human aortic endothelial cells (HAECs) loaded with Fura-2 was evaluated in static or flow conditions. Under the static state, U-II (100 nM) abolished spontaneous Ca2+ oscillations, which occurred in a population of cultured HAEC. Similarly, U-II reduced thrombin-, but not ATP-induced calcium responses, suggesting that the peptide does not alter the Gq/11/IP3 pathway; rather, it modifies the coupling between protease-activated receptors and Gq/11/IP3. Under the flow condition, U-II (1, 10 and 100 nM) produced a dose-dependent increase in [Ca2+]i, which was subjected to desensitization. The result demonstrates a state-dependent effect of U-II in cultured HAEC, which may explain the variable responses to U-II under different experimental conditions.


Assuntos
Cálcio/metabolismo , Células Endoteliais/metabolismo , Urotensinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Humanos , Resistência ao Cisalhamento , Trombina/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 27(9): 1976-83, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17715404

RESUMO

OBJECTIVE: We previously reported that homocysteine (Hcy) inhibits endothelial cell (EC) growth and promotes vascular smooth muscle cell (VSMC) proliferation. This study characterized and directly compared Hcy transport in cultured human aortic ECs (HAECs) and smooth muscle cells (HASMCs). METHODS AND RESULTS: Hcy (10 micromol/L) was transported into both cell types in a time-dependent fashion but was approximately 4-fold greater in HASMCs, and is nonstereoenantiomer specific. Hcy transport in HAECs had a Michaelis-Menten constant (Km) of 39 micromol/L and a maximal transport velocity (Vmax) of 873 pmol/mg protein/min. In contrast, Hcy transport in HASMCs had a lower affinity (Km = 106 micromol/L) but a higher transport capacity (Vmax = 4192 pmol/mg protein/min). Competition studies revealed that the small neutral amino acids tyrosine, cysteine, glycine, serine, alanine, methionine, and leucine inhibited Hcy uptake in both cell types, but the inhibition was greater for tyrosine, serine, glycine, and alanine in HAECs. Sodium-depletion reduced Hcy transport to 16% in HAECs and 56% in HASMCs. Increases in pH from 6.5 to 8.2 or lysosomal inhibitors blocked Hcy uptake only in HAECs. In addition, Hcy shares carrier systems with cysteine, in a preferable order of alanine-serine-cysteine (ASC) > aspartate and glutamate (X(AG)) = large branched-chain neutral amino acids (L) transporter systems in HAECs and ASC > L > X(AG) in HASMCs. The sodium-dependent system ASC plays a predominant role for Hcy transport in vascular cells. CONCLUSIONS: Transport system ASC predominantly mediates Hcy transport in EC and is lysosomal dependent.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Células Endoteliais/fisiologia , Homocisteína/metabolismo , Miócitos de Músculo Liso/fisiologia , Aorta/citologia , Transporte Biológico Ativo/fisiologia , Células Cultivadas , Humanos , Cinética , Lisossomos , Músculo Liso Vascular/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA