Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580203

RESUMO

In landscapes that support economic and cultural activities, human communities actively manage environments and environmental change at a variety of spatial scales that complicate the effects of continental-scale climate. Here, we demonstrate how hydrological conditions were modified by humans against the backdrop of Holocene climate change in southwestern Amazonia. Paleoecological investigations (phytoliths, charcoal, pollen, diatoms) of two sediment cores extracted from within the same permanent wetland, ∼22 km apart, show a 1,500-y difference in when the intensification of land use and management occurred, including raised field agriculture, fire regime, and agroforestry. Although rising precipitation is well known during the mid to late Holocene, human actions manipulated climate-driven hydrological changes on the landscape, revealing differing histories of human landscape domestication. Environmental factors are unable to account for local differences without the mediation of human communities that transformed the region to its current savanna/forest/wetland mosaic beginning at least 3,500 y ago. Regional environmental variables did not drive the choices made by farmers and fishers, who shaped these local contexts to better manage resource extraction. The savannas we observe today were created in the post-European period, where their fire regime and structural diversity were shaped by cattle ranching.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791256

RESUMO

Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.


Assuntos
Reatores Biológicos , Células Endoteliais , Vesículas Extracelulares , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Células Cultivadas , Barreira Hematoencefálica/metabolismo , Angiogênese
3.
BMC Cell Biol ; 18(1): 32, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29137597

RESUMO

BACKGROUND: Self-renewal and differentiation of embryonic stem cells (ESCs) is directed by biological and/or physical cues that regulate multiple signaling cascades. We have previously shown that mESCs seeded in a type I collagen matrix demonstrate a loss of pluripotent marker expression and differentiate towards an osteogenic lineage. In this study, we examined if this effect was mediated in part through Arginylglycylaspartic acid (RGD) dependent integrin activity and/or mechano-transduction. RESULTS: The results from this study suggest that mESC interaction with the local microenvironment through RGD dependent integrins play a role in the regulation of mESC core transcription factors (TF), Oct-4, Sox 2 and Nanog. Disruption of this interaction with a cyclic RGD peptide (cRGDfC) was sufficient to mimic the effect of a mechanical stimulus in terms of pluripotent gene expression, specifically, we observed that supplementation with cRGDfC, or mechanical stimulus, significantly influenced mESC pluripotency by down-regulating core transcription factors. Moreover, our results indicated that the presence of the cRGDfC peptide inhibited integrin expression and up-regulated early lineage markers (mesoderm and ectoderm) in a Leukemia inhibitory factor (LIF) dependent manner. When cRGDfC treated mESCs were injected in Severe combined immunodeficiency (SCID) mice, no tissue growth and/or teratoma formation was observed, suggesting that the process of mESC tumor formation in vivo is potentially dependent on integrin interaction. CONCLUSIONS: Overall, the disruption of cell-integrin interaction via cRGDfC peptide can mimic the effect of mechanical stimulation on mESC pluripotency gene expression and also inhibit the tumorigenic potential of mESCs in vivo.


Assuntos
Fenômenos Biomecânicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Integrinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/fisiologia , Peptídeos Cíclicos/farmacologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Integrinas/genética , Camundongos , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
4.
JOR Spine ; 7(3): e1359, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39092166

RESUMO

Introduction: Degenerative disc disease (DDD) is accompanied by structural changes in the intervertebral discs (IVD). Extra-cellular matrix degradation of the annulus fibrosus (AF) has been linked with degeneration of the IVD. Collagen is a vital component of the IVD. Collagen hybridizing peptide (CHP) is an engineered protein that binds to degraded collagen, which we used to quantify collagen damage in AF. This method was used to compare AF samples obtained from donors with no DDD to AF samples from patients undergoing surgery for symptomatic DDD. Methods: Fresh AF tissue was embedded in an optimal cutting temperature compound and cryosectioned at a thickness of 8 µm. Hematoxylin and Eosin staining was performed on sections for general histomorphological assessment. Serial sections were stained with Cy3-conjugated CHP and the mean fluorescence intensity and areal fraction of Cy3-positive staining were averaged for three regions of interest (ROI) on each CHP-stained section. Results: Increases in mean fluorescence intensity (p = 0.0004) and percentage of positively stained area (p = 0.00008) with CHP were detected in DDD samples compared to the non-DDD samples. Significant correlations were observed between mean fluorescence intensity and percentage of positively stained area for both non-DDD (R = 0.98, p = 5E-8) and DDD (R = 0.79, p = 0.0012) samples. No significant differences were detected between sex and the lumbar disc level subgroups of the non-DDD and DDD groups. Only tissue pathology (non-DDD versus DDD) influenced the measured parameters. No three-way interactions between tissue pathology, sex, and lumbar disc level were observed. Discussion and Conclusions: These findings suggest that AF collagen degradation is greater in DDD samples compared to non-DDD samples, as evidenced by the increased CHP staining. Strong positive correlations between the two measured parameters suggest that when collagen degradation occurs, it is detected by this technique and is widespread throughout the tissue. This study provides new insights into the structural alterations associated with collagen degradation in the AF that occur during DDD.

5.
Stem Cell Res Ther ; 14(1): 218, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612731

RESUMO

BACKGROUND: Following an ischemic injury to the brain, the induction of angiogenesis is critical to neurological recovery. The angiogenic benefits of mesenchymal stem cells (MSCs) have been attributed at least in part to the actions of extracellular vesicles (EVs) that they secrete. EVs are membrane-bound vesicles that contain various angiogenic biomolecules capable of eliciting therapeutic responses and are of relevance in cerebral applications due to their ability to cross the blood-brain barrier (BBB). Though MSCs are commonly cultured under oxygen levels present in injected air, when MSCs are cultured under physiologically relevant oxygen conditions (2-9% O2), they have been found to secrete higher amounts of survival and angiogenic factors. There is a need to determine the effects of MSC-EVs in models of cerebral angiogenesis and whether those from MSCs cultured under physiological oxygen provide greater functional effects. METHODS: Human adipose-derived MSCs were grown in clinically relevant serum-free medium and exposed to either headspace oxygen concentrations of 18.4% O2 (normoxic) or 3% O2 (physioxic). EVs were isolated from MSC cultures by differential ultracentrifugation and characterized by their size, concentration of EV specific markers, and their angiogenic protein content. Their functional angiogenic effects were evaluated in vitro by their induction of cerebral microvascular endothelial cell (CMEC) proliferation, tube formation, and angiogenic and tight junction gene expressions. RESULTS: Compared to normoxic conditions, culturing MSCs under physioxic conditions increased their expression of angiogenic genes SDF1 and VEGF, and subsequently elevated VEGF-A content in the EV fraction. MSC-EVs demonstrated an ability to induce CMEC angiogenesis by promoting tube formation, with the EV fraction from physioxic cultures having the greatest effect. The physioxic EV fraction further upregulated the expression of CMEC angiogenic genes FGF2, HIF1, VEGF and TGFB1, as well as genes (OCLN and TJP1) involved in BBB maintenance. CONCLUSIONS: EVs from physioxic MSC cultures hold promise in the generation of a cell-free therapy to induce angiogenesis. Their positive angiogenic effect on cerebral microvascular endothelial cells demonstrates that they may have utility in treating ischemic cerebral conditions, where the induction of angiogenesis is critical to improving recovery and neurological function.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular/genética , Encéfalo , Fatores Imunológicos
6.
Sci Rep ; 13(1): 9378, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296277

RESUMO

Promoting bone healing including fracture non-unions are promising targets for bone tissue engineering due to the limited success of current clinical treatment methods. There has been significant research on the use of stem cells with and without biomaterial scaffolds to treat bone fractures due to their promising regenerative capabilities. However, the relative roles of exogenous vs. endogenous stem cells and their overall contribution to in vivo fracture repair is not well understood. The purpose of this study was to determine the interaction between exogenous and endogenous stem cells during bone healing. This study was conducted using a standardized burr-hole bone injury model in a mesenchymal progenitor cell (MPC) lineage-tracing mouse under normal homeostatic and osteoporotic conditions. Burr-hole injuries were treated with a collagen-I biomaterial loaded with and without labelled induced pluripotent stem cells (iPSCs). Using lineage-tracing, the roles of exogenous and endogenous stem cells during bone healing were examined. It was observed that treatment with iPSCs resulted in muted healing compared to untreated controls in intact mice post-injury. When the cell populations were examined histologically, iPSC-treated burr-hole defects presented with a dramatic reduction in endogenous MPCs and cell proliferation throughout the injury site. However, when the ovaries were removed and an osteoporotic-like phenotype induced in the mice, iPSCs treatment resulted in increased bone formation relative to untreated controls. In the absence of iPSCs, endogenous MPCs demonstrated robust proliferative and osteogenic capacity to undertake repair and this behaviour was disrupted in the presence of iPSCs which instead took on an osteoblast fate but with little proliferation. This study clearly demonstrates that exogenously delivered cell populations can impact the normal function of endogenous stem/progenitor populations during the normal healing cascade. These interactions need to be better understood to inform cell and biomaterial therapies to treat fractures.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese , Células-Tronco Mesenquimais/fisiologia , Materiais Biocompatíveis , Engenharia Tecidual/métodos , Diferenciação Celular
7.
Proc Natl Acad Sci U S A ; 106(32): 13202-6, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19633184

RESUMO

In a study of residues from gourd and squash artifacts, we recovered starch grains from manioc (Manihot esculenta), potato (Solanum sp.), chili pepper (Capsicum spp.), arrowroot (Maranta arundinacea), and algarrobo (Prosopis sp.) from feasting contexts at the Buena Vista site, a central Peruvian preceramic site dating to approximately 2200 calendar years B.C. This study has implications for the study of plant food use wherever gourds or squashes are preserved, documents the earliest evidence for the consumption of algarrobo and arrowroot in Peru, and provides insights into foods consumed at feasts.


Assuntos
Cucurbita/química , Cucurbitaceae/química , Alimentos/história , Sementes , Amido/química , Arqueologia , Cerâmica , Dieta/história , Geografia , Sedimentos Geológicos/química , História Antiga , Peru
8.
Stem Cells Transl Med ; 11(1): 73-87, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641171

RESUMO

Mesenchymal progenitor cells (MPCs) have shown promise initiating articular cartilage repair, with benefits largely attributed to the trophic factors they secrete. These factors can be found in the conditioned medium (CM) collected from cell cultures, and it is believed that extracellular vesicles (EVs) within this CM are at least partially responsible for MPC therapeutic efficacy. This study aimed to examine the functionality of the EV fraction of CM compared to whole CM obtained from human adipose-derived MPCs in an in vivo murine cartilage defect model. Mice treated with whole CM or the EV fraction demonstrated an enhanced cartilage repair score and type II collagen deposition at the injury site compared to saline controls. We then developed a scalable bioprocess using stirred suspension bioreactors (SSBs) to generate clinically relevant quantities of MPC-EVs. Whereas static monolayer culture systems are simple to use and readily accessible, SSBs offer increased scalability and a more homogenous environment due to constant mixing. This study evaluated the biochemical and functional properties of MPCs and their EV fractions generated in static culture versus SSBs. Functionality was assessed using in vitro MPC chondrogenesis as an outcome measure. SSBs supported increased MPC expression of cartilage-specific genes, and EV fractions derived from both static and SSB culture systems upregulated type II collagen production by MPCs. These results suggest that SSBs are an effective platform for the generation of MPC-derived EVs with the potential to induce cartilage repair.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Regeneração , Animais , Reatores Biológicos , Terapia Baseada em Transplante de Células e Tecidos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Camundongos
9.
PLoS One ; 16(3): e0248104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755684

RESUMO

Back pain and intervertebral disc degeneration are prevalent, costly, and widely treated by manual therapies, yet the underlying causes of these diseases are indeterminate as are the scientific bases for such treatments. The present studies characterize the effects of repetitive in vivo manual loads on porcine intervertebral disc cell metabolism using RNA deep sequencing. A single session of repetitive manual loading applied to the lumbar spine induced both up- and down-regulation of a variety of genes transcribed by cells in the ventral annuli fibrosi. The effect of manual therapy at the level of loading was greater than at a level distant to the applied load. Gene ontology and molecular pathway analyses categorized biological, molecular, and cellular functions influenced by repetitive manual loading, with over-representation of membrane, transmembrane, and pericellular activities. Weighted Gene Co-expression Network Analysis discerned enrichment in genes in pathways of inflammation and skeletogenesis. The present studies support previous findings of intervertebral disc cell mechanotransduction, and are the first to report comprehensively on the repertoire of gene targets influenced by mechanical loads associated with manual therapy interventions. The present study defines the cellular response of repeated, low-amplitude loads on normal healthy annuli fibrosi and lays the foundation for future work defining how healthy and diseased intervertebral discs respond to single or low-frequency manual loads typical of those applied clinically.


Assuntos
Anel Fibroso/fisiologia , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Mecanotransdução Celular/fisiologia , Suporte de Carga/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Dor Lombar/fisiopatologia , Estresse Mecânico , Suínos
10.
Stem Cells Int ; 2018: 9415367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275839

RESUMO

Mesenchymal stem cells (MSCs) have attracted tremendous research interest due to their ability to repair tissues and reduce inflammation when implanted into a damaged or diseased site. These therapeutic effects have been largely attributed to the collection of biomolecules they secrete (i.e., their secretome). Recent studies have provided evidence that similar effects may be produced by utilizing only the secretome fraction containing extracellular vesicles (EVs). EVs are cell-derived, membrane-bound vesicles that contain various biomolecules. Due to their small size and relative mobility, they provide a stable mechanism to deliver biomolecules (i.e., biological signals) throughout an organism. The use of the MSC secretome, or its components, has advantages over the implantation of the MSCs themselves: (i) signals can be bioengineered and scaled to specific dosages, and (ii) the nonliving nature of the secretome enables it to be efficiently stored and transported. However, since the composition and therapeutic benefit of the secretome can be influenced by cell source, culture conditions, isolation methods, and storage conditions, there is a need for standardization of bioprocessing parameters. This review focuses on key parameters within the MSC culture environment that affect the nature and functionality of the secretome. This information is pertinent to the development of bioprocesses aimed at scaling up the production of secretome-derived products for their use as therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA