Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Sci ; 11(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393111

RESUMO

Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA