Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762531

RESUMO

Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 µM cisplatin (CisPt) or 12.5-100 µM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 µM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Humanos , Camundongos , Animais , RNA-Seq , Linhagem Celular , Túbulos Renais Proximais/metabolismo , Cisplatino/metabolismo
2.
Environ Microbiol ; 16(8): 2611-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24118864

RESUMO

The majority of bacteria engaged in bioluminescent symbiosis are environmentally acquired and facultatively symbiotic. A few enigmatic bioluminescent symbionts have not been successfully cultured, which has led to speculation that they may be obligately dependent on their hosts. Here, we report the draft genome of the uncultured luminous symbiont of an anomalopid flashlight fish, 'Candidatus Photodesmus katoptron'. The genome of the anomalopid symbiont is reduced by 80% compared with close relatives and lacks almost all genes necessary for amino acid synthesis and for metabolism of energy sources other than glucose, supporting obligate dependence on the host for growth. 'Candidatus Photodesmus katoptron' is the first described obligate mutualistic symbiont of a vertebrate. Unlike most other obligate mutualists, the anomalopid symbiont genome has retained complete pathways for chemotaxis and motility as well as most genes involved in cell wall production, consistent with the hypothesis that these bacteria may be transmitted environmentally during an extra-host phase.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Peixes/microbiologia , Genoma Bacteriano , Filogenia , Vibrionaceae/genética , Animais , Evolução Biológica , Expressão Gênica , Tamanho do Genoma , Luminescência , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Simbiose/genética , Transcriptoma , Vibrionaceae/classificação
3.
J Bacteriol ; 193(12): 3144-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478348

RESUMO

Photobacterium mandapamensis is one of three luminous Photobacterium species able to form species-specific bioluminescent symbioses with marine fishes. Here, we present the draft genome sequence of P. mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor, the first genome of a symbiotic, luminous Photobacterium species to be sequenced. Analysis of the sequence provides insight into differences between P. mandapamensis and other luminous and symbiotic bacteria in genes involved in quorum-sensing regulation of light production and establishment of symbiosis.


Assuntos
Peixes/microbiologia , Genoma Bacteriano , Photobacterium/genética , Photobacterium/metabolismo , Simbiose/fisiologia , Animais , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular
4.
Mol Phylogenet Evol ; 61(3): 834-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864694

RESUMO

Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.


Assuntos
Bactérias/classificação , Bactérias/genética , Peixes/microbiologia , Luminescência , Simbiose/genética , Animais , Sequência de Bases , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genes Essenciais/genética , Funções Verossimilhança , Dados de Sequência Molecular , Óperon/genética , Filogenia
5.
Proc Natl Acad Sci U S A ; 105(19): 7016-21, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18463287

RESUMO

To reveal regulators of innate immunity, we used RNAi assays to monitor the immune response when genes are inhibited in Caenorhabditis elegans and mouse macrophages. Genes that altered innate immune responsiveness in C. elegans were validated in murine macrophages, resulting in the discovery of 11 genes that regulate the innate immune response in both systems and the subsequent identification of a protein interaction network with a conserved role in innate immunity regulation. We confirmed the role of four of these 11 genes in antimicrobial gene regulation using available mutants in C. elegans. Several of these genes (acy-1, tub-2, and tbc-1) also regulate susceptibility to the pathogen Pseudomonas aeruginosa. These genes may prove critical to understanding host defense and represent potential therapeutic targets for infectious and immunological diseases.


Assuntos
Caenorhabditis elegans/genética , Genômica/métodos , Imunidade Inata/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Cromossomos/genética , Regulação da Expressão Gênica , Camundongos , Mutação/genética , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico
6.
PLoS Genet ; 4(4): e1000053, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18437200

RESUMO

A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of approximately 4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways.


Assuntos
Genoma Fúngico/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Elementos de Transição/toxicidade , Análise por Conglomerados , Poluentes Ambientais/toxicidade , Deleção de Genes , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes Fúngicos/efeitos dos fármacos , Família Multigênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Transdução de Sinais/efeitos dos fármacos
7.
Toxicol Sci ; 181(2): 175-186, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33749773

RESUMO

Interpretation of untargeted metabolomics data from both in vivo and physiologically relevant in vitro model systems continues to be a significant challenge for toxicology research. Potency-based modeling of toxicological responses has served as a pillar of interpretive context and translation of testing data. In this study, we leverage the resolving power of concentration-response modeling through benchmark concentration (BMC) analysis to interpret untargeted metabolomics data from differentiated cultures of HepaRG cells exposed to a panel of reference compounds and integrate data in a potency-aligned framework with matched transcriptomic data. For this work, we characterized biological responses to classical human liver injury compounds and comparator compounds, known to not cause liver injury in humans, at 10 exposure concentrations in spent culture media by untargeted liquid chromatography-mass spectrometry analysis. The analyte features observed (with limited metabolites identified) were analyzed using BMC modeling to derive compound-induced points of departure. The results revealed liver injury compounds produced concentration-related increases in metabolomic response compared to those rarely associated with liver injury (ie, sucrose, potassium chloride). Moreover, the distributions of altered metabolomic features were largely comparable with those observed using high throughput transcriptomics, which were further extended to investigate the potential for in vitro observed biological responses to be observed in humans with exposures at therapeutic doses. These results demonstrate the utility of BMC modeling of untargeted metabolomics data as a sensitive and quantitative indicator of human liver injury potential.


Assuntos
Benchmarking , Transcriptoma , Humanos , Fígado , Espectrometria de Massas , Metabolômica
8.
Front Microbiol ; 10: 2670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824455

RESUMO

All organisms depend on symbiotic associations with bacteria for their success, yet how these interspecific interactions influence the population structure, ecology, and evolution of microbial symbionts is not well understood. Additionally, patterns of genetic variation in interacting species can reveal ecological traits that are important to gene flow and co-evolution. In this study, we define patterns of spatial and temporal genetic variation of a coral reef fish, Siphamia tubifer, and its luminous bacterial symbiont, Photobacterium mandapamensis in the Okinawa Islands, Japan. Using restriction site-associated sequencing (RAD-Seq) methods, we show that populations of the facultative light organ symbiont of S. tubifer exhibit genetic structure at fine spatial scales of tens of kilometers despite the absence of physical barriers to dispersal and in contrast to populations of the host fish. These results suggest that the host's behavioral ecology and environmental interactions between host and symbiont help to structure symbiont populations in the region, consequently fostering the specificity of the association between host generations. Our approach also revealed several symbiont genes that were divergent between host populations, including hfq and a homolog of varS, both of which play a role in host association in Vibrio cholerae. Overall, this study highlights the important role that a host animal can play in structuring the distribution of its bacterial symbiont, particularly in highly connected marine environments, thereby promoting specificity of the symbiosis between host generations.

9.
Toxicol Sci ; 169(2): 553-566, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850835

RESUMO

Prediction of human response to chemical exposures is a major challenge in both pharmaceutical and toxicological research. Transcriptomics has been a powerful tool to explore chemical-biological interactions, however, limited throughput, high-costs, and complexity of transcriptomic interpretations have yielded numerous studies lacking sufficient experimental context for predictive application. To address these challenges, we have utilized a novel high-throughput transcriptomics (HTT) platform, TempO-Seq, to apply the interpretive power of concentration-response modeling with exposures to 24 reference compounds in both differentiated and non-differentiated human HepaRG cell cultures. Our goals were to (1) explore transcriptomic characteristics distinguishing liver injury compounds, (2) assess impacts of differentiation state of HepaRG cells on baseline and compound-induced responses (eg, metabolically-activated), and (3) identify and resolve reference biological-response pathways through benchmark concentration (BMC) modeling. Study data revealed the predictive utility of this approach to identify human liver injury compounds by their respective BMCs in relation to human internal exposure plasma concentrations, and effectively distinguished drug analogs with varied associations of human liver injury (eg, withdrawn therapeutics trovafloxacin and troglitazone). Impacts of cellular differentiation state (proliferated vs differentiated) were revealed on baseline drug metabolizing enzyme expression, hepatic receptor signaling, and responsiveness to metabolically-activated toxicants (eg, cyclophosphamide, benzo(a)pyrene, and aflatoxin B1). Finally, concentration-response modeling enabled efficient identification and resolution of plausibly-relevant biological-response pathways through their respective pathway-level BMCs. Taken together, these findings revealed HTT paired with differentiated in vitro liver models as an effective tool to model, explore, and interpret toxicological and pharmacological interactions.


Assuntos
Benchmarking , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Ativação Metabólica , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Humanos
10.
Toxicol Sci ; 172(2): 316-329, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504990

RESUMO

Botanical dietary supplements are complex mixtures with numerous potential sources of variation along the supply chain from raw plant material to the market. Approaches for determining sufficient similarity (ie, complex mixture read-across) may be required to extrapolate efficacy or safety data from a tested sample to other products containing the botanical ingredient(s) of interest. In this work, screening-level approaches for generating both chemical and biological-response profiles were used to evaluate the similarity of black cohosh (Actaea racemosa) and Echinacea purpurea samples to well-characterized National Toxicology Program (NTP) test articles. Data from nontargeted chemical analyses and gene expression of toxicologically important hepatic receptor pathways (aryl hydrocarbon receptor [AhR], constitutive androstane receptor [CAR], pregnane X receptor [PXR], farnesoid X receptor [FXR], and peroxisome proliferator-activated receptor alpha [PPARα]) in primary human hepatocyte cultures were used to determine similarity through hierarchical clustering. Although there were differences in chemical profiles across black cohosh samples, these differences were not reflected in the biological-response profiles. These findings highlight the complexity of biological-response dynamics that may not be reflected in chemical composition profiles. Thus, biological-response data could be used as the primary basis for determining similarity among black cohosh samples. Samples of E. purpurea displayed better correlation in similarity across chemical and biological-response measures. The general approaches described herein can be applied to complex mixtures with unidentified active constituents to determine when data from a tested mixture (eg, NTP test article) can be used for hazard identification of sufficiently similar mixtures, with the knowledge of toxicological targets informing assay selection when possible.


Assuntos
Cimicifuga/química , Suplementos Nutricionais , Echinacea/química , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Preparações de Plantas/química , Preparações de Plantas/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Receptor Constitutivo de Androstano , Hepatócitos/metabolismo , Humanos , PPAR alfa/genética , Receptor de Pregnano X/genética , Cultura Primária de Células , Receptores de Hidrocarboneto Arílico/genética , Receptores Citoplasmáticos e Nucleares/genética
11.
J Bacteriol ; 190(10): 3494-504, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359809

RESUMO

Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2) operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Oxirredutases/genética , Proteínas Repressoras/genética , Transativadores/genética , Vibrionaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Medições Luminescentes , Família Multigênica , Óperon , Filogenia , Vibrionaceae/enzimologia , Vibrionaceae/fisiologia
12.
Appl Environ Microbiol ; 74(24): 7471-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978090

RESUMO

Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Perciformes/microbiologia , Perciformes/fisiologia , Photobacterium/isolamento & purificação , Photobacterium/fisiologia , Simbiose , Estruturas Animais/microbiologia , Estruturas Animais/ultraestrutura , Animais , Proteínas de Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , Larva/microbiologia , Larva/fisiologia , Larva/ultraestrutura , Luminescência , Microscopia Eletrônica de Transmissão , Photobacterium/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Vibrio/isolamento & purificação , Vibrio/metabolismo , Vibrio/fisiologia
13.
Environ Health Perspect ; 126(7): 077010, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059008

RESUMO

BACKGROUND: A central challenge in toxicity testing is the large number of chemicals in commerce that lack toxicological assessment. In response, the Tox21 program is re-focusing toxicity testing from animal studies to less expensive and higher throughput in vitro methods using target/pathway-specific, mechanism-driven assays. OBJECTIVES: Our objective was to use an in-depth mechanistic study approach to prioritize and characterize the chemicals affecting mitochondrial function. METHODS: We used a tiered testing approach to prioritize for more extensive testing 622 compounds identified from a primary, quantitative high-throughput screen of 8,300 unique small molecules, including drugs and industrial chemicals, as potential mitochondrial toxicants by their ability to significantly decrease the mitochondrial membrane potential (MMP). Based on results from secondary MMP assays in HepG2 cells and rat hepatocytes, 34 compounds were selected for testing in tertiary assays that included formation of reactive oxygen species (ROS), upregulation of p53 and nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), mitochondrial oxygen consumption, cellular Parkin translocation, and larval development and ATP status in the nematode Caenorhabditis elegans. RESULTS: A group of known mitochondrial complex inhibitors (e.g., rotenone) and uncouplers (e.g., chlorfenapyr), as well as potential novel complex inhibitors and uncouplers, were detected. From this study, we identified four not well-characterized potential mitochondrial toxicants (lasalocid, picoxystrobin, pinacyanol, and triclocarban) that merit additional in vivo characterization. CONCLUSIONS: The tier-based approach for identifying and mechanistically characterizing mitochondrial toxicants can potentially reduce animal use in toxicological testing. https://doi.org/10.1289/EHP2589.


Assuntos
Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Células Hep G2 , Hepatócitos , Humanos , Ratos , Testes de Toxicidade/instrumentação
14.
Genome Announc ; 4(5)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660786

RESUMO

Histamine-producing bacteria (HPBs) have recently been identified from the marine environment. The identification and characterization of HPBs is important to developing effective mitigation strategies for scombrotoxin fish poisoning. We report here the draft genomes of seven histamine-producing and two non-histamine-producing marine Photobacterium strains.

15.
Genome Biol Evol ; 8(7): 2203-13, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27389687

RESUMO

The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to most obligate bacteria, anomalopid symbionts have an active environmental phase that may be important for symbiont transmission. Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two symbionts, "Candidatus Photodesmus katoptron" and "Candidatus Photodesmus blepharus," have genomes that are highly similar in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome stasis exists in spite of the symbiont's inferred ability to recombine, which is frequently lacking in obligate symbionts with stable genomes. Additionally, we used genome comparisons and tests of selection to infer which genes may be particularly important for the symbiont's ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage, which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize.


Assuntos
Evolução Molecular , Peixes/microbiologia , Genoma Bacteriano , Simbiose , Vibrionaceae/genética , Animais , Instabilidade Genômica , Filogenia , Seleção Genética , Vibrionaceae/classificação , Vibrionaceae/patogenicidade
16.
Cladistics ; 21(4): 305-327, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34892969

RESUMO

A phylogeny was generated for Leiognathidae, an assemblage of bioluminescent, Indo-Pacific schooling fishes, using 6175 characters derived from seven mitochondrial genes (16S, COI, ND4, ND5, tRNA-His, tRNA-Ser, tRNA-Leu), two nuclear genes (28S, histone H3), and 15 morphological transformations corresponding to features of the fishes' sexually dimorphic light-organ system (LOS; e.g., circumesophageal light organ, lateral lining of the gas bladder, transparent flank and opercular patches). Leiognathidae comprises three genera, Gazza, Leiognathus, and Secutor. Our results demonstrate that Leiognathidae, Gazza, and Secutor are monophyletic, whereas Leiognathus is not. The recovered pattern of relationships reveals that a structurally complex, strongly sexually dimorphic and highly variable species-specific light organ is derived from a comparatively simple non-dimorphic structure, and that evolution of other sexually dimorphic internal and external features of the male LOS are closely linked with these light-organ modifications. Our results demonstrate the utility of LOS features, both for recovering phylogeny and resolving taxonomic issues in a clade whose members otherwise exhibit little morphological variation. We diagnose two new leiognathid genera, Photopectoralis and Photoplagios, on the basis of these apomorphic LOS features and also present derived features of the LOS to diagnose several additional leiognathid clades, including Gazza and Secutor. Furthermore, we show that five distinct and highly specialized morphologies for male-specific lateral luminescence signaling, which exhibit species-specific variation in structure, have evolved in these otherwise outwardly conservative fishes. Leiognathids inhabit turbid coastal waters with poor visibility and are often captured in mixed assemblages of several species. We hypothesize that the species-specific, sexually dimorphic internal and external modifications of the leiognathid LOS provide compelling evidence for an assortative mating scheme in which males use species-specific patterns of lateral luminescence signaling to attract mates, and that this system functions to maintain reproductive isolation in these turbid coastal environments.

17.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931609

RESUMO

Histamine-producing bacteria are responsible for scombrotoxin (histamine) fish poisoning, a leading cause of fish poisoning in the United States. We report here the draft genome sequences of four histamine-producing (HP) Photobacterium kishitanii strains and nine HP Photobacterium angustum strains isolated from tuna.

19.
Adv Biochem Eng Biotechnol ; 144: 37-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084994

RESUMO

Bacterial light production involves enzymes-luciferase, fatty acid reductase, and flavin reductase-and substrates-reduced flavin mononucleotide and long-chain fatty aldehyde-that are specific to bioluminescence in bacteria. The bacterial genes coding for these enzymes, luxA and luxB for the subunits of luciferase; luxC, luxD, and luxE for the components of the fatty acid reductase; and luxG for flavin reductase, are found as an operon in light-emitting bacteria, with the gene order, luxCDABEG. Over 30 species of marine and terrestrial bacteria, which cluster phylogenetically in Aliivibrio, Photobacterium, and Vibrio (Vibrionaceae), Shewanella (Shewanellaceae), and Photorhabdus (Enterobacteriaceae), carry lux operon genes. The luminescence operons of some of these bacteria also contain genes involved in the synthesis of riboflavin, ribEBHA, and in some species, regulatory genes luxI and luxR are associated with the lux operon. In well-studied cases, lux genes are coordinately expressed in a population density-responsive, self-inducing manner called quorum sensing. The evolutionary origins and physiological function of bioluminescence in bacteria are not well understood but are thought to relate to utilization of oxygen as a substrate in the luminescence reaction.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Luminescência , Genes Bacterianos/genética , Óperon/genética
20.
Environ Microbiol Rep ; 6(4): 331-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992531

RESUMO

The luminous bacterial symbionts of anomalopid flashlight fishes, which appear to be obligately dependent on their hosts for growth, share several evolutionary patterns with unrelated obligate bacteria. However, only one flashlight fish symbiont species has been characterized in detail, and it is therefore not known if the bacteria from other anomalopid species are highly divergent (a pattern common to obligate symbionts). Unlike most obligate symbionts, the bacteria symbiotic with anomalopids are extracellular and spend time outside their hosts in the environment, from which they are thought to colonize new host generations. Environmental acquisition might decrease the likelihood of bacterial divergence between host species. We used phylogenetic analysis to determine the relatedness of symbionts from different anomalopid host species. The symbionts of hosts in the genus Photoblepharon were resolved as a new species, for which we propose the name 'Candidatus Photodesmus blepharus'. Furthermore, different genera of anomalopids were found to harbour different species of bacteria, even when the hosts overlapped in geographic range. This finding suggests that the divergence between bacterial species is not the result of geographic isolation. The specificity of symbionts to host genera is consistent with obligate dependence on the host and has implications for symbiont transmission.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cordados/microbiologia , Especificidade de Hospedeiro , Simbiose , Vibrionaceae/classificação , Vibrionaceae/isolamento & purificação , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Luminescência , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA