Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(5): 652-670, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862812

RESUMO

Wearable devices, such as smartwatches and activity trackers, are commonly used by patients in their everyday lives to manage their health and well-being. These devices collect and analyze long-term continuous data on measures of behavioral or physiologic function, which may provide clinicians with a more comprehensive view of a patients' health compared with the traditional sporadic measures captured by office visits and hospitalizations. Wearable devices have a wide range of potential clinical applications ranging from arrhythmia screening of high-risk individuals to remote management of chronic conditions such as heart failure or peripheral artery disease. As the use of wearable devices continues to grow, we must adopt a multifaceted approach with collaboration among all key stakeholders to effectively and safely integrate these technologies into routine clinical practice. In this Review, we summarize the features of wearable devices and associated machine learning techniques. We describe key research studies that illustrate the role of wearable devices in the screening and management of cardiovascular conditions and identify directions for future research. Last, we highlight the challenges that are currently hindering the widespread use of wearable devices in cardiovascular medicine and provide short- and long-term solutions to promote increased use of wearable devices in clinical care.


Assuntos
Fármacos Cardiovasculares , Insuficiência Cardíaca , Doença Arterial Periférica , Dispositivos Eletrônicos Vestíveis , Humanos , Hospitalização
2.
Nature ; 569(7758): 663-671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142858

RESUMO

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Assuntos
Biomarcadores/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Estado Pré-Diabético/microbiologia , Proteoma/metabolismo , Transcriptoma , Adulto , Idoso , Antibacterianos/administração & dosagem , Biomarcadores/análise , Estudos de Coortes , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/metabolismo , Vacinas contra Influenza/imunologia , Insulina/metabolismo , Resistência à Insulina , Estudos Longitudinais , Masculino , Microbiota/fisiologia , Pessoa de Meia-Idade , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estresse Fisiológico , Vacinação/estatística & dados numéricos
3.
J Card Fail ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582256

RESUMO

BACKGROUND: Data collected via wearables may complement in-clinic assessments to monitor subclinical heart failure (HF). OBJECTIVES: Evaluate the association of sensor-based digital walking measures with HF stage and characterize their correlation with in-clinic measures of physical performance, cardiac function and participant reported outcomes (PROs) in individuals with early HF. METHODS: The analyzable cohort included participants from the Project Baseline Health Study (PBHS) with HF stage 0, A, or B, or adaptive remodeling phenotype (without risk factors but with mild echocardiographic change, termed RF-/ECHO+) (based on available first-visit in-clinic test and echocardiogram results) and with sufficient sensor data. We computed daily values per participant for 18 digital walking measures, comparing HF subgroups vs stage 0 using multinomial logistic regression and characterizing associations with in-clinic measures and PROs with Spearman's correlation coefficients, adjusting all analyses for confounders. RESULTS: In the analyzable cohort (N=1265; 50.6% of the PBHS cohort), one standard deviation decreases in 17/18 walking measures were associated with greater likelihood for stage-B HF (multivariable-adjusted odds ratios [ORs] vs stage 0 ranging from 1.18-2.10), or A (ORs vs stage 0, 1.07-1.45), and lower likelihood for RF-/ECHO+ (ORs vs stage 0, 0.80-0.93). Peak 30-minute pace demonstrated the strongest associations with stage B (OR vs stage 0=2.10; 95% CI:1.74-2.53) and A (OR vs stage 0=1.43; 95% CI:1.23-1.66). Decreases in 13/18 measures were associated with greater likelihood for stage-B HF vs stage A. Strength of correlation with physical performance tests, echocardiographic cardiac-remodeling and dysfunction indices and PROs was greatest in stage B, then A, and lowest for 0. CONCLUSIONS: Digital measures of walking captured by wearable sensors could complement clinic-based testing to identify and monitor pre-symptomatic HF.

4.
Annu Rev Biomed Eng ; 24: 1-27, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932906

RESUMO

Mounting clinical evidence suggests that viral infections can lead to detectable changes in an individual's normal physiologic and behavioral metrics, including heart and respiration rates, heart rate variability, temperature, activity, and sleep prior to symptom onset, potentially even in asymptomatic individuals. While the ability of wearable devices to detect viral infections in a real-world setting has yet to be proven, multiple recent studies have established that individual, continuous data from a range of biometric monitoring technologies can be easily acquired and that through the use of machine learning techniques, physiological signals and warning signs can be identified. In this review, we highlight the existing knowledge base supporting the potential for widespread implementation of biometric data to address existing gaps in the diagnosis and treatment of viral illnesses, with a particular focus on the many important lessons learned from the coronavirus disease 2019 pandemic.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Biometria , COVID-19/diagnóstico , Humanos
5.
J Med Internet Res ; 25: e43617, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071460

RESUMO

BACKGROUND: Digital sensing solutions represent a convenient, objective, relatively inexpensive method that could be leveraged for assessing symptoms of various health conditions. Recent progress in the capabilities of digital sensing products has targeted the measurement of scratching during sleep, traditionally referred to as nocturnal scratching, in patients with atopic dermatitis or other skin conditions. Many solutions measuring nocturnal scratch have been developed; however, a lack of efforts toward standardization of the measure's definition and contextualization of scratching during sleep hampers the ability to compare different technologies for this purpose. OBJECTIVE: We aimed to address this gap and bring forth unified measurement definitions for nocturnal scratch. METHODS: We performed a narrative literature review of definitions of scratching in patients with skin inflammation and a targeted literature review of sleep in the context of the period during which such scratching occurred. Both searches were limited to English language studies in humans. The extracted data were synthesized into themes based on study characteristics: scratch as a behavior, other characterization of the scratching movement, and measurement parameters for both scratch and sleep. We then developed ontologies for the digital measurement of sleep scratching. RESULTS: In all, 29 studies defined inflammation-related scratching between 1996 and 2021. When cross-referenced with the results of search terms describing the sleep period, only 2 of these scratch-related papers also described sleep-related variables. From these search results, we developed an evidence-based and patient-centric definition of nocturnal scratch: an action of rhythmic and repetitive skin contact movement performed during a delimited time period of intended and actual sleep that is not restricted to any specific time of the day or night. Based on the measurement properties identified in the searches, we developed ontologies of relevant concepts that can be used as a starting point to develop standardized outcome measures of scratching during sleep in patients with inflammatory skin conditions. CONCLUSIONS: This work is intended to serve as a foundation for the future development of unified and well-described digital health technologies measuring nocturnal scratching and should enable better communication and sharing of results between various stakeholders taking part in research in atopic dermatitis and other inflammatory skin conditions.


Assuntos
Dermatite Atópica , Prurido , Humanos , Dermatite Atópica/diagnóstico , Inflamação , Movimento , Prurido/diagnóstico , Sono , Qualidade de Vida
6.
J Public Health Manag Pract ; 29(6): 863-873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379511

RESUMO

OBJECTIVE: Scalable strategies to reduce the time burden and increase contact tracing efficiency are crucial during early waves and peaks of infectious transmission. DESIGN: We enrolled a cohort of SARS-CoV-2-positive seed cases into a peer recruitment study testing social network methodology and a novel electronic platform to increase contact tracing efficiency. SETTING: Index cases were recruited from an academic medical center and requested to recruit their local social contacts for enrollment and SARS-CoV-2 testing. PARTICIPANTS: A total of 509 adult participants enrolled over 19 months (384 seed cases and 125 social peers). INTERVENTION: Participants completed a survey and were then eligible to recruit their social contacts with unique "coupons" for enrollment. Peer participants were eligible for SARS-CoV-2 and respiratory pathogen screening. MAIN OUTCOME MEASURES: The main outcome measures were the percentage of tests administered through the study that identified new SARS-CoV-2 cases, the feasibility of deploying the platform and the peer recruitment strategy, the perceived acceptability of the platform and the peer recruitment strategy, and the scalability of both during pandemic peaks. RESULTS: After development and deployment, few human resources were needed to maintain the platform and enroll participants, regardless of peaks. Platform acceptability was high. Percent positivity tracked with other testing programs in the area. CONCLUSIONS: An electronic platform may be a suitable tool to augment public health contact tracing activities by allowing participants to select an online platform for contact tracing rather than sitting for an interview.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Saúde Pública , Teste para COVID-19 , SARS-CoV-2 , Busca de Comunicante/métodos
7.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298367

RESUMO

Background: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, and ingestible and implantable sensors are increasingly used by individuals and clinicians to capture the health outcomes or behavioral and physiological characteristics of individuals. Time series classification (TSC) is very commonly used for modeling digital clinical measures. While deep learning models for TSC are very common and powerful, there exist some fundamental challenges. This review presents the non-deep learning models that are commonly used for time series classification in biomedical applications that can achieve high performance. Objective: We performed a systematic review to characterize the techniques that are used in time series classification of digital clinical measures throughout all the stages of data processing and model building. Methods: We conducted a literature search on PubMed, as well as the Institute of Electrical and Electronics Engineers (IEEE), Web of Science, and SCOPUS databases using a range of search terms to retrieve peer-reviewed articles that report on the academic research about digital clinical measures from a five-year period between June 2016 and June 2021. We identified and categorized the research studies based on the types of classification algorithms and sensor input types. Results: We found 452 papers in total from four different databases: PubMed, IEEE, Web of Science Database, and SCOPUS. After removing duplicates and irrelevant papers, 135 articles remained for detailed review and data extraction. Among these, engineered features using time series methods that were subsequently fed into widely used machine learning classifiers were the most commonly used technique, and also most frequently achieved the best performance metrics (77 out of 135 articles). Statistical modeling (24 out of 135 articles) algorithms were the second most common and also the second-best classification technique. Conclusions: In this review paper, summaries of the time series classification models and interpretation methods for biomedical applications are summarized and categorized. While high time series classification performance has been achieved in digital clinical, physiological, or biomedical measures, no standard benchmark datasets, modeling methods, or reporting methodology exist. There is no single widely used method for time series model development or feature interpretation, however many different methods have proven successful.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Smartphone , Fatores de Tempo
8.
J Med Internet Res ; 23(9): e29875, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524089

RESUMO

BACKGROUND: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products, academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly characterized. OBJECTIVE: We performed a systematic review to characterize the nature of academic research on digital clinical measures and to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research. METHODS: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles reporting US-led academic research on digital clinical measures between January 2019 and February 2021. We screened each publication against specific inclusion and exclusion criteria. We then identified and categorized research studies based on the types of academic research, sensors used, and funding sources. Finally, we compared and contrasted the funding support for these specific subareas of research and sensor types. RESULTS: The search retrieved 4240 articles of interest. Following the screening, 295 articles remained for data extraction and categorization. The top five research subareas included operations research (research analysis; n=225, 76%), analytical validation (n=173, 59%), usability and utility (data visualization; n=123, 42%), verification (n=93, 32%), and clinical validation (n=83, 28%). The three most underrepresented areas of research into digital clinical measures were ethics (n=0, 0%), security (n=1, 0.5%), and data rights and governance (n=1, 0.5%). Movement and activity trackers were the most commonly studied sensor type, and physiological (mechanical) sensors were the least frequently studied. We found that government agencies are providing the most funding for research on digital clinical measures (n=192, 65%), followed by independent foundations (n=109, 37%) and industries (n=56, 19%), with the remaining 12% (n=36) of these studies completely unfunded. CONCLUSIONS: Specific subareas of academic research related to digital clinical measures are not keeping pace with the rapid expansion and adoption of digital sensing products. An integrated and coordinated effort is required across academia, academic partners, and academic funders to establish the field of digital clinical measures as an evidence-based field worthy of our trust.


Assuntos
Atenção à Saúde , Smartphone , Humanos
9.
Sensors (Basel) ; 21(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450898

RESUMO

A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare "data deluge," leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the "Biosignal Data Compression Toolbox," an open-source, accessible software platform for compressing biosignal data.


Assuntos
Compressão de Dados , Algoritmos , Eletrocardiografia , Fotopletismografia , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
10.
PLoS Biol ; 15(1): e2001402, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081144

RESUMO

A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography.


Assuntos
Técnicas Biossensoriais , Eletrônica Médica , Saúde , Modelagem Computacional Específica para o Paciente , Ritmo Circadiano/fisiologia , Eletrônica Médica/instrumentação , Humanos , Inflamação/diagnóstico , Insulina/metabolismo , Resistência à Insulina , Oxigênio/metabolismo , Pressão Parcial , Medicina de Precisão , Radiação , Reprodutibilidade dos Testes
11.
Sensors (Basel) ; 20(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397421

RESUMO

The dynamic time warping (DTW) algorithm is widely used in pattern matching and sequence alignment tasks, including speech recognition and time series clustering. However, DTW algorithms perform poorly when aligning sequences of uneven sampling frequencies. This makes it difficult to apply DTW to practical problems, such as aligning signals that are recorded simultaneously by sensors with different, uneven, and dynamic sampling frequencies. As multi-modal sensing technologies become increasingly popular, it is necessary to develop methods for high quality alignment of such signals. Here we propose a DTW algorithm called EventDTW which uses information propagated from defined events as basis for path matching and hence sequence alignment. We have developed two metrics, the error rate (ER) and the singularity score (SS), to define and evaluate alignment quality and to enable comparison of performance across DTW algorithms. We demonstrate the utility of these metrics on 84 publicly-available signals in addition to our own multi-modal biomedical signals. EventDTW outperformed existing DTW algorithms for optimal alignment of signals with different sampling frequencies in 37% of artificial signal alignment tasks and 76% of real-world signal alignment tasks.


Assuntos
Algoritmos , Tecnologia Biomédica , Tempo
14.
Arterioscler Thromb Vasc Biol ; 35(7): 1562-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953647

RESUMO

Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Metilação de DNA , Endotélio Vascular/metabolismo , Epigênese Genética , Hemodinâmica , Animais , Diferenciação Celular , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel
16.
Pac Symp Biocomput ; 29: 163-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160277

RESUMO

Data from digital health technologies (DHT), including wearable sensors like Apple Watch, Whoop, Oura Ring, and Fitbit, are increasingly being used in biomedical research. Research and development of DHT-related devices, platforms, and applications is happening rapidly and with significant private-sector involvement with new biotech companies and large tech companies (e.g. Google, Apple, Amazon, Uber) investing heavily in technologies to improve human health. Many academic institutions are building capabilities related to DHT research, often in cross-sector collaboration with technology companies and other organizations with the goal of generating clinically meaningful evidence to improve patient care, to identify users at an earlier stage of disease presentation, and to support health preservation and disease prevention. Large research consortia, cross-sector partnerships, and individual research labs are all represented in the current corpus of published studies. Some of the large research studies, like NIH's All of Us Research Program, make data sets from wearable sensors available to the research community, while the vast majority of data from wearable sensors and other DHTs are held by private sector organizations and are not readily available to the research community. As data are unlocked from the private sector and made available to the academic research community, there is an opportunity to develop innovative analytics and methods through expanded access. This is the second year for this Session which solicited research results leveraging digital health technologies, including wearable sensor data, describing novel analytical methods, and issues related to diversity, equity, inclusion (DEI) of the research, data, and the community of researchers working in this area. We particularly encouraged submissions describing opportunities for expanding and democratizing academic research using data from wearable sensors and related digital health technologies.


Assuntos
Saúde Digital , Saúde da População , Humanos , Biologia Computacional , Tecnologia
17.
Lancet Digit Health ; 6(4): e291-e298, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402128

RESUMO

Respiratory diseases are a leading cause of morbidity and mortality globally. However, existing systems of care, built around scheduled appointments, are not well designed to support the needs of people with chronic and acute respiratory conditions that can change rapidly and unexpectedly. Home-based and personal digital health technologies (DHTs) allow implementation of new models of care catering to the unique needs of individuals. The high number of respiratory triggers and unique responses to them require a personalised solution for each patient. The real-world, repetitive monitoring capabilities of DHTs enable identification of the normal operating characteristics for each individual and, therefore, recognition of the earliest deviations from that state. However, despite this potential, the number of clinical efficacy studies of DHTs is quite small. Evaluation of clinical effectiveness of DHTs in improving health quality in real-world settings is urgently needed.


Assuntos
Saúde Digital , Doenças Respiratórias , Humanos , Doenças Respiratórias/terapia
18.
NPJ Digit Med ; 7(1): 44, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388660

RESUMO

Smart portable devices- smartphones and smartwatches- are rapidly being adopted by the general population, which has brought forward an opportunity to use the large volumes of physiological, behavioral, and activity data continuously being collected by these devices in naturalistic settings to perform research, monitor health, and track disease. While these data can serve to revolutionize health monitoring in research and clinical care, minimal research has been conducted to understand what motivates people to use these devices and their interest and comfort in sharing the data. In this study, we aimed to characterize the ownership and usage of smart devices among patients from an expansive academic health system in the southeastern US and understand their willingness to share data collected by the smart devices. We conducted an electronic survey of participants from an online patient advisory group around smart device ownership, usage, and data sharing. Out of the 3021 members of the online patient advisory group, 1368 (45%) responded to the survey, with 871 female (64%), 826 and 390 White (60%) and Black (29%) participants, respectively, and a slight majority (52%) age 58 and older. Most of the respondents (98%) owned a smartphone and the majority (59%) owned a wearable. In this population, people who identify as female, Hispanic, and Generation Z (age 18-25), and those completing higher education and having full-time employment, were most likely to own a wearable device compared to their demographic counterparts. 50% of smart device owners were willing to share and 32% would consider sharing their smart device data for research purposes. The type of activity data they are willing to share varies by gender, age, education, and employment. Findings from this study can be used to design both equitable and cost-effective digital health studies, leveraging personally-owned smartphones and wearables in representative populations, ultimately enabling the development of equitable digital health technologies.

19.
Circ Genom Precis Med ; 17(3): e000095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779844

RESUMO

Wearable devices are increasingly used by a growing portion of the population to track health and illnesses. The data emerging from these devices can potentially transform health care. This requires an interoperability framework that enables the deployment of platforms, sensors, devices, and software applications within diverse health systems, aiming to facilitate innovation in preventing and treating cardiovascular disease. However, the current data ecosystem includes several noninteroperable systems that inhibit such objectives. The design of clinically meaningful systems for accessing and incorporating these data into clinical workflows requires strategies to ensure the quality of data and clinical content and patient and caregiver accessibility. This scientific statement aims to address the best practices, gaps, and challenges pertaining to data interoperability in this area, with considerations for (1) data integration and the scope of measures, (2) application of these data into clinical approaches/strategies, and (3) regulatory/ethical/legal issues.


Assuntos
American Heart Association , Doenças Cardiovasculares , Monitorização Ambulatorial , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/diagnóstico , Interoperabilidade da Informação em Saúde , Monitorização Ambulatorial/métodos , Monitorização Ambulatorial/normas , Estados Unidos , Dispositivos Eletrônicos Vestíveis
20.
NPJ Digit Med ; 7(1): 70, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493216

RESUMO

Daily routines, including in-person school and extracurricular activities, are important for maintaining healthy physical activity and sleep habits in children. The COVID-19 pandemic significantly disrupted daily routines as in-person school and activities closed to prevent spread of SARS-CoV-2. We aimed to examine and assess differences in objectively measured physical activity levels and sleep patterns from wearable sensors in children with obesity before, during, and after a period of school and extracurricular activity closures associated with the COVID-19 pandemic. We compared average step count and sleep patterns (using the Mann-Whitney U Test) before and during the pandemic-associated school closures by using data from activity tracker wristbands (Garmin VivoFit 3). Data were collected from 94 children (aged 5-17) with obesity, who were enrolled in a randomized controlled trial testing a community-based lifestyle intervention for a duration of 12-months. During the period that in-person school and extracurricular activities were closed due to the COVID-19 pandemic, children with obesity experienced objectively-measured decreases in physical activity, and sleep duration. From March 15, 2020 to March 31, 2021, corresponding with local school closures, average daily step count decreased by 1655 steps. Sleep onset and wake time were delayed by about an hour and 45 min, respectively, while sleep duration decreased by over 12 min as compared with the pre-closure period. Step counts increased with the resumption of in-person activities. These findings provide objective evidence for parents, clinicians, and public health professionals on the importance of in-person daily activities and routines on health behaviors, particularly for children with pre-existing obesity. Trial Registration: Clinical trial registration: NCT03339440.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA