Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 31(23): 6100-6113, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33973299

RESUMO

Habitat quality can have far-reaching effects on organismal fitness, an issue of concern given the current scale of habitat degradation. Many temperate upland streams have reduced nutrient levels due to human activity. Nutrient restoration confers benefits in terms of invertebrate food availability and subsequent fish growth rates. Here we test whether these mitigation measures also affect the rate of cellular ageing of the fish, measured in terms of the telomeres that cap the ends of eukaryotic chromosomes. We equally distributed Atlantic salmon eggs from the same 30 focal families into 10 human-impacted oligotrophic streams in northern Scotland. Nutrient levels in five of the streams were restored by simulating the deposition of a small number of adult Atlantic salmon Salmo salar carcasses at the end of the spawning period, while five reference streams were left as controls. Telomere lengths and expression of the telomerase reverse transcriptase (TERT) gene that may act to lengthen telomeres were then measured in the young fish when 15 months old. While TERT expression was unrelated to any of the measured variables, telomere lengths were shorter in salmon living at higher densities and in areas with a lower availability of the preferred substrate (cobbles and boulders). However, the adverse effects of these habitat features were much reduced in the streams receiving nutrients. These results suggest that adverse environmental pressures are weakened when nutrients are restored, presumably because the resulting increase in food supply reduces levels of both competition and stress.


Assuntos
Ecossistema , Salmo salar , Animais , Clima , Invertebrados , Salmo salar/genética , Telômero/genética
2.
Am J Physiol Endocrinol Metab ; 309(7): E632-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26264555

RESUMO

In rat pancreatic islets, ß-cell gene expression, survival, and subsequent acute glucose stimulation of insulin secretion (GSIS) are optimally preserved by prolonged culture at 10 mM glucose (G10) and markedly altered by culture at G5 or G30. Here, we tested whether pharmacological glucokinase (GK) activation prevents these alterations during culture or improves GSIS after culture. Rat pancreatic islets were cultured 1-7 days at G5, G10, or G30 with or without 3 µM of the GK activator Ro 28-0450 (Ro). After culture, ß-cell apoptosis and islet gene mRNA levels were measured, and the acute glucose-induced increase in NAD(P)H autofluorescence, intracellular calcium concentration, and insulin secretion were tested in the absence or presence of Ro. Prolonged culture of rat islets at G5 or G30 instead of G10 triggered ß-cell apoptosis and reduced their glucose responsiveness. Addition of Ro during culture differently affected ß-cell survival and glucose responsiveness depending on the glucose concentration during culture: it was beneficial to ß-cell survival and function at G5, detrimental at G10, and ineffective at G30. In contrast, acute GK activation with Ro increased the glucose sensitivity of islets cultured at G10 but failed at restoring ß-cell glucose responsiveness after culture at G5 or G30. We conclude that pharmacological GK activation prevents the alteration of ß-cell survival and function by long-term culture at G5 but mimics glucotoxicity when added to G10. The complex effects of glucose on the ß-cell phenotype result from changes in glucose metabolism and not from an effect of glucose per se.


Assuntos
Glucoquinase/metabolismo , Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Sulfonas/farmacologia , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar
3.
Biochem J ; 460(3): 411-23, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24678915

RESUMO

The glucose stimulation of insulin secretion by pancreatic ß-cells depends on increased production of metabolic coupling factors, among which changes in NADPH and ROS (reactive oxygen species) may alter the glutathione redox state (EGSH) and signal through changes in thiol oxidation. However, whether nutrients affect EGSH in ß-cell subcellular compartments is unknown. Using redox-sensitive GFP2 fused to glutaredoxin 1 and its mitochondria-targeted form, we studied the acute nutrient regulation of EGSH in the cytosol/nucleus or the mitochondrial matrix of rat islet cells. These probes were mainly expressed in ß-cells and reacted to low concentrations of exogenous H2O2 and menadione. Under control conditions, cytosolic/nuclear EGSH was close to -300 mV and unaffected by glucose (from 0 to 30 mM). In comparison, mitochondrial EGSH was less negative and rapidly regulated by glucose and other nutrients, ranging from -280 mV in the absence of glucose to -299 mV in 30 mM glucose. These changes were largely independent from changes in intracellular Ca(2+) concentration and in mitochondrial pH. They were unaffected by overexpression of SOD2 (superoxide dismutase 2) and mitochondria-targeted catalase, but were inversely correlated with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from increased NADPH availability rather than from changes in ROS concentration. Interestingly, the opposite regulation of mitochondrial EGSH and NAD(P)H autofluorescence by glucose was also observed in human islets isolated from two donors. In conclusion, the present study demonstrates that glucose and other nutrients acutely reduce mitochondrial, but not cytosolic/nuclear, EGSH in pancreatic ß-cells under control conditions.


Assuntos
Glucose/farmacologia , Glutationa/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Cálcio/metabolismo , Catalase/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/fisiologia , NADP/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/metabolismo
4.
Biochem J ; 441(3): 971-8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22050124

RESUMO

Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic ß-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in ß-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in ß-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat ß-cells.


Assuntos
Glutationa/análise , Proteínas de Fluorescência Verde/análise , Peróxido de Hidrogênio/análise , Células Secretoras de Insulina/química , Medições Luminescentes/métodos , Mitocôndrias/química , Animais , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Cinética , Masculino , Mitocôndrias/metabolismo , Concentração Osmolar , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade
5.
Biochem Biophys Res Commun ; 415(2): 294-9, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22033410

RESUMO

In vitro, survival and function of rat pancreatic ß-cells are optimally preserved in the presence of 10 mmol/l glucose (G10) and markedly altered by prolonged culture at either 2 mmol/l glucose (G2) or 30 mmol/l glucose (G30). The increase in islet cell apoptosis in G2 and G30 vs. G10 is preceded by parallel increases in the mRNA levels of the integrated stress response (ISR) gene activating transcription factor 3 (Atf3) and its putative target and proapoptotic gene growth arrest- and DNA damage-inducible gene 153 (Gadd153/Chop). In this study, we used islets from Atf3 knockout (Atf3(-/-)) mice to test the role of ATF3 in the stimulation of islet cell apoptosis under conditions associated with ISR activation. The glucose sensitivity of Atf3(-/-) and WT islets for the stimulation of insulin secretion and Xbp1 mRNA splicing during 18h culture was similar, demonstrating that glucose metabolism was unaffected by Atf3 deletion. However, the stimulation of islet cell apoptosis by the SERCA pump inhibitor thapsigargin was slightly but significantly reduced in Atf3(-/-) vs. WT islets despite similar level of expression of Gadd153 and Gadd34 mRNA. Also, the stimulation of islet cell apoptosis by 7 days of culture in G2 was slightly but significantly reduced in Atf3(-/-) vs. WT islets, and this effect was accompanied by a significant reduction in Gadd153 mRNA expression. In conclusion, the increase in Atf3 gene expression induced by thapsigargin and low glucose concentrations slightly contributes to the stimulation of islet cell apoptosis under these culture conditions.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Apoptose/fisiologia , Glucose/fisiologia , Células Secretoras de Insulina/fisiologia , Fator 3 Ativador da Transcrição/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Técnicas de Cultura de Células , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Ratos , Tapsigargina/farmacologia , Fator de Transcrição CHOP/biossíntese
6.
J Immunol Methods ; 495: 113083, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089747

RESUMO

The ability to measure immunomodulatory effects of a vaccine is crucial for novel vaccine design. While traditional animal models have been effective, a better understanding of the response in humans to new vaccines in pre-clinical development is critical for advancement to clinical trials. A translational methodology that can capture the complexity of a vaccine-driven response in a human model, which does not require human exposure, is needed. Here we have designed a platform that uses fresh human whole blood as a key component to study the adaptive immune memory response to vaccine formulations. The response is monitored by high-parameter single cell analysis using mass cytometry (Helios, CyTOF System), allowing for a rapid, in-depth characterization of antigen specific proliferation and expansion of preexisting memory T cells in concert with an innate adjuvant-driven response. In this work we demonstrate the capability of this platform to characterize biologically relevant changes in the cellular response across memory T-cells, B cells, monocytes, and NK cells, at an unprecedented level of detail. This approach that we call Immunocartography has the potential to transform the way new vaccines can be assessed before and throughout clinical development.


Assuntos
Linfócitos B/efeitos dos fármacos , Vacinas contra Difteria, Tétano e Coqueluche Acelular/farmacologia , Imunogenicidade da Vacina , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Monitorização Imunológica , Proteômica , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Memória Imunológica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Valor Preditivo dos Testes , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fluxo de Trabalho
7.
Comput Struct Biotechnol J ; 19: 439-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489011

RESUMO

PURPOSE: The goal of this study was to characterize an acellular pertussis vaccine (Tdap) containing genetically modified pertussis toxin (gdPT) and TLR agonist adsorbed to AlOOH adjuvant. METHODS: Several analytical tools including nanoDSF, FTIR, and LD were used to examine the conformation of novel gdPT and the composition of AlOOH adjuvant formulations adsorbed to pertussis vaccine. RESULTS: DLS particle size results were 9.3 nm and 320 nm for gdPT. For pertussis toxoid (PT), the DLS particle size results were larger at ~440 nm. After adsorption to AlOOH, which was driven by the protein antigen, the size distribution ranged from 3.5 to 22 µm. Two thermal transitions were observed by DSC for gdPT at 70 °C and 102 °C. The main thermal transition was confirmed to be at 72 °C by nanoDSF. All three vaccine formulations showed one thermal transition: Tdap-AlOOH had a thermal transition of 74.6 °C, Tdap-E6020-AlOOH had a thermal transition at 74.2 °C, and Tdap-CpG-AlOOH had a thermal transition at 77.0 °C. Analysis of pertussis toxin (PTx) and gdPT was also performed by FTIR spectroscopy for the purpose of comparison. The second derivative of the FTIR spectra showed an additional feature for PTx at 1685 cm-1 compared to gdPT. The antigen's amide I and II regions were largely unchanged after adsorption to AlOOH adjuvant as shown by FTIR, suggesting that there were no significant changes in the secondary structure. CONCLUSION: gdPT conformation was successfully characterized using an array of analytical methods. All three Tdap formulations have similar thermal stability as shown by nanoDSF, similar size distribution as shown by LD, and similar overall secondary structure as shown by FTIR. In-line particle sizing and IR can be used as in-process characterization tools to monitor consistency of adsorbed vaccine and to confirm product identity.

8.
Commun Biol ; 3(1): 427, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759959

RESUMO

The mutant gdPT R9K/E129G is a genetically detoxified variant of the pertussis toxin (PTx) and represents an attractive candidate for the development of improved pertussis vaccines. The impact of the mutations on the overall protein structure and its immunogenicity has remained elusive. Here we present the crystal structure of gdPT and show that it is nearly identical to that of PTx. Hydrogen-deuterium exchange mass spectrometry revealed dynamic changes in the catalytic domain that directly impacted NAD+ binding which was confirmed by biolayer interferometry. Distal changes in dynamics were also detected in S2-S5 subunit interactions resulting in tighter packing of B-oligomer corresponding to increased thermal stability. Finally, antigen stimulation of human whole blood, analyzed by a previously unreported mass cytometry assay, indicated broader immunogenicity of gdPT compared to pertussis toxoid. These findings establish a direct link between the conserved structure of gdPT and its ability to generate a robust immune response.


Assuntos
Toxina Pertussis/química , Vacina contra Coqueluche/genética , Conformação Proteica , Toxoides/genética , Animais , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Toxina Pertussis/genética , Vacina contra Coqueluche/química , Coqueluche/microbiologia , Coqueluche/prevenção & controle
9.
Comput Struct Biotechnol J ; 17: 14-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30581540

RESUMO

PURPOSE: The goal of this study is to set an empirical baseline to map the structure-function relation of the antigens from the commercialized vaccine products. METHODS: To study the structural changes of protein antigens after adsorption several analytical tools including DLS, FTIR, Fluorescence, LD, and SEM have been used. RESULTS: All antigens have shown wide range of hydrodynamic diameter from 7 nm to 182 nm. Upon adjuvantation, the size distribution has become narrow, ranging from 10 to 12 µm, and has been driven by the derived diameter of aluminum phosphate (AlPO4) adjuvant. Further to examine size and morphology of adsorbed antigens, SEM has been used. The SEM results have demonstrated that the AlPO4 adjuvant suspension and adsorbed proteins consist of submicron particles that form a continuous porous surface. Diphtheria Toxoid (DT), Tetanus Toxoid (TT), and chemically-modified Filamentous Haemagglutinin (FHA) have shown surface adsorption to AlPO4. Secondary structure alpha-helix and beta-sheet content of DT and TT has increased after adsorption to AlPO4 adjuvant as shown by FTIR, whereas no significant changes were noted for other protein antigens. The results from Intrinsic Fluorescence have shown a structural rearrangement in DT and TT, consistent with the FTIR results. Multivalent vaccine product identity has been determined by FTIR as unique fingerprint spectrum. CONCLUSION: The globular proteins such as DT and TT have shown changes in secondary structure upon adsorption to AlPO4, whereas fibrillar protein FHA has not been affected by adsorption. FTIR can be used as a lean technique to confirm product identity at different manufacturing sites.

10.
Sci Rep ; 8(1): 3802, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491449

RESUMO

Throughout the lifespan of an individual, the immune system undergoes complex changes while facing novel and chronic infections. Helminths, which infect over one billion people and impose heavy livestock productivity losses, typically cause chronic infections by avoiding and suppressing host immunity. Yet, how age affects immune responses to lifelong parasitic infection is poorly understood. To disentangle the processes involved, we employed supervised statistical learning techniques to identify which factors among haematopoietic stem and progenitor cells (HSPC), and both innate and adaptive responses regulate parasite burdens and how they are affected by host age. Older mice harboured greater numbers of the parasites' offspring than younger mice. Protective immune responses that did not vary with age were dominated by HSPC, while ageing specifically eroded adaptive immunity, with reduced numbers of naïve T cells, poor T cell responsiveness to parasites, and impaired antibody production. We identified immune factors consistent with previously-reported immune responses to helminths, and also revealed novel interactions between helminths and HSPC maturation. Our approach thus allowed disentangling the concurrent effects of ageing and infection across the full maturation cycle of the immune response and highlights the potential of such approaches to improve understanding of the immune system within the whole organism.


Assuntos
Envelhecimento/imunologia , Filariose/imunologia , Filarioidea/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Doença Crônica , Feminino , Filariose/fisiopatologia , Células-Tronco Hematopoéticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/citologia
11.
PLoS One ; 7(10): e46831, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056475

RESUMO

AIM/HYPOTHESIS: Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl(2), a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations. METHODS: Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive ß-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing "redox sensitive GFP" targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA. RESULTS: As observed for Mt1a mRNA levels, ß-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50-100 µM ZnCl(2) to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late ß-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions. CONCLUSION: ZnCl(2) reduces mitochondrial oxidative stress and improves rat ß-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cloretos/farmacologia , Citoproteção/efeitos dos fármacos , Glucose/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Compostos de Zinco/farmacologia , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cultura de Células , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Fatores de Tempo , Transportador 8 de Zinco
12.
Diabetes ; 61(5): 1100-11, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22399686

RESUMO

Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic ß-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect ß-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect ß-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote ß-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on ß-cells against ER stress-inducing factors.


Assuntos
Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Lipoproteínas HDL/metabolismo , Proteínas de Membrana/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/ultraestrutura , Insulinoma/metabolismo , Lipoproteínas HDL/genética , Masculino , Camundongos , Mutação , Dobramento de Proteína , Transporte Proteico , Ratos , Ratos Wistar , Proteínas Virais de Fusão/metabolismo
13.
PLoS Negl Trop Dis ; 6(11): e1895, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133694

RESUMO

BACKGROUND: Chrysomya spp are common blowflies in Africa, Asia and parts of South America and some species can reproduce in prodigious numbers in pit latrines. Because of their strong association with human feces and their synanthropic nature, we examined whether these flies are likely to be vectors of diarrheal pathogens. METHODOLOGY/PRINCIPAL FINDINGS: Flies were sampled using exit traps placed over the drop holes of latrines in Gambian villages. Odor-baited fly traps were used to determine the relative attractiveness of different breeding and feeding media. The presence of bacteria on flies was confirmed by culture and bacterial DNA identified using PCR. A median of 7.00 flies/latrine/day (IQR = 0.0-25.25) was collected, of which 95% were Chrysomya spp, and of these nearly all were Chrysomya putoria (99%). More flies were collected from traps with feces from young children (median = 3.0, IQR = 1.75-10.75) and dogs (median = 1.50, IQR = 0.0-13.25) than from herbivores (median = 0.0, IQR = 0.0-0.0; goat, horse, cow and calf; p<0.001). Flies were strongly attracted to raw meat (median = 44.5, IQR = 26.25-143.00) compared with fish (median = 0.0, IQR = 0.0-19.75, ns), cooked and uncooked rice, and mangoes (median = 0.0, IQR = 0.0-0.0; p<0.001). Escherichia coli were cultured from the surface of 21% (15/72 agar plates) of Chrysomya spp and 10% of these were enterotoxigenic. Enteroaggregative E. coli were identified by PCR in 2% of homogenized Chrysomya spp, Shigella spp in 1.4% and Salmonella spp in 0.6% of samples. CONCLUSIONS/SIGNIFICANCE: The large numbers of C. putoria that can emerge from pit latrines, the presence of enteric pathogens on flies, and their strong attraction to raw meat and fish suggests these flies may be common vectors of diarrheal diseases in Africa.


Assuntos
Dípteros/microbiologia , Dípteros/fisiologia , Vetores de Doenças , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Animais , Técnicas Bacteriológicas , Criança , Pré-Escolar , Diarreia/microbiologia , Cães , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Fezes , Alimentos , Gâmbia , Humanos , Reação em Cadeia da Polimerase , Ruminantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA