Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139364

RESUMO

This study assessed the safety and efficacy of OncoTherad® (MRB-CFI-1) nanoimmunotherapy for non-muscle invasive bladder cancer (NMIBC) patients unresponsive to Bacillus Calmette-Guérin (BCG) and explored its mechanisms of action in a bladder cancer microenvironment. A single-arm phase I/II study was conducted with 44 patients with NMIBC who were unresponsive to BCG treatment. Primary outcomes were pathological complete response (pCR) and relapse-free survival (RFS). Secondary outcomes comprised response duration and therapy safety. Patients' mean age was 65 years; 59.1% of them were refractory, 31.8% relapsed, and 9.1% were intolerant to BCG. Moreover, the pCR rate after 24 months reached 72.7% (95% CI), whereas the mean RFS reached 21.4 months. Mean response duration in the pCR group was 14.3 months. No patient developed muscle-invasive or metastatic disease during treatment. Treatment-related adverse events occurred in 77.3% of patients, mostly grade 1-2 events. OncoTherad® activated the innate immune system through toll-like receptor 4, leading to increased interferon signaling. This activation played a crucial role in activating CX3CR1+ CD8 T cells, decreasing immune checkpoint molecules, and reversing immunosuppression in the bladder microenvironment. OncoTherad® has proved to be a safe and effective therapeutic option for patients with BCG-unresponsive NMIBC, besides showing likely advantages in tumor relapse prevention processes.


Assuntos
Imunoterapia , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Idoso , Humanos , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Vacina BCG/uso terapêutico , Receptor 1 de Quimiocina CX3C , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias não Músculo Invasivas da Bexiga/terapia , Transdução de Sinais , Receptor 4 Toll-Like/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Imunoterapia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas
2.
J Cell Biochem ; 123(7): 1247-1258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661241

RESUMO

Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-ß, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Receptores ErbB , Humanos , Indóis/farmacologia
3.
Mol Biol Rep ; 49(7): 6931-6943, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301654

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. METHODS AND RESULTS: miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/ß-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/ß-catenin, NF-κß, and STAT3 signaling pathways. CONCLUSIONS: If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19.


Assuntos
COVID-19 , MicroRNAs , Brasil/epidemiologia , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , SARS-CoV-2 , beta Catenina/genética
4.
Bioorg Chem ; 127: 106000, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853296

RESUMO

In the last decade, emerging evidence has shown that low molecular weight protein tyrosine phosphatase (LMWPTP) not only contributes to the progression of cancer but is associated with prostate low survival rate and colorectal cancer metastasis. We report that LMWPTP favors the glycolytic profile in some tumors. Therefore, the focus of the present study was to identify metabolic enzymes that correlate with LMWPTP expression in patient samples. Exploratory data analysis from RNA-seq, proteomics, and histology staining, confirmed the higher expression of LMWPTP in CRC. Our descriptive statistical analyses indicate a positive expression correlation between LMWPTP and energy metabolism enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). In addition, we examine the potential of violacein to reprogram energetic metabolism and LMWPTP activity. Violacein treatment induced a shift of glycolytic to oxidative metabolism associated with alteration in mitochondrial efficiency, as indicated by higher oxygen consumption rate. Particularly, violacein treated cells displayed higher proton leak and ATP-linked oxygen consumption rate (OCR) as an indicator of the OXPHOS preference. Notably, violacein is able to bind and inhibit LMWPTP. Since the LMWPTP acts as a hub of signaling pathways that offer tumor cells invasive advantages, such as survival and the ability to migrate, our findings highlight an unexplored potential of violacein in circumventing the metabolic plasticity of tumor cells.


Assuntos
Neoplasias Colorretais , Proteínas Tirosina Fosfatases , Neoplasias Colorretais/patologia , Humanos , Indóis , Masculino , Mitocôndrias/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
5.
Anal Chem ; 93(4): 2471-2479, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33471512

RESUMO

COVID-19 is still placing a heavy health and financial burden worldwide. Impairment in patient screening and risk management plays a fundamental role on how governments and authorities are directing resources, planning reopening, as well as sanitary countermeasures, especially in regions where poverty is a major component in the equation. An efficient diagnostic method must be highly accurate, while having a cost-effective profile. We combined a machine learning-based algorithm with mass spectrometry to create an expeditious platform that discriminate COVID-19 in plasma samples within minutes, while also providing tools for risk assessment, to assist healthcare professionals in patient management and decision-making. A cross-sectional study enrolled 815 patients (442 COVID-19, 350 controls and 23 COVID-19 suspicious) from three Brazilian epicenters from April to July 2020. We were able to elect and identify 19 molecules related to the disease's pathophysiology and several discriminating features to patient's health-related outcomes. The method applied for COVID-19 diagnosis showed specificity >96% and sensitivity >83%, and specificity >80% and sensitivity >85% during risk assessment, both from blinded data. Our method introduced a new approach for COVID-19 screening, providing the indirect detection of infection through metabolites and contextualizing the findings with the disease's pathophysiology. The pairwise analysis of biomarkers brought robustness to the model developed using machine learning algorithms, transforming this screening approach in a tool with great potential for real-world application.


Assuntos
COVID-19/diagnóstico , Aprendizado de Máquina , Metabolômica , Adulto , Idoso , Automação , Biomarcadores/metabolismo , Brasil , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , SARS-CoV-2/isolamento & purificação
6.
World J Microbiol Biotechnol ; 37(9): 151, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398340

RESUMO

The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cosméticos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indústria Alimentícia , Humanos
7.
Crit Rev Biotechnol ; 40(1): 15-30, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31658818

RESUMO

Nanotechnology has been proposed as an important tool and strategy for applying new products in agriculture at the nanometer scale in order to improve the food crop at sustainability and productivity levels for contributing with the agriculture security. Nanoparticles (NPs) have been planted as an intelligent material with a large contact surface per unit mass respect to bulk-products, allowing its effect to be exerted with greater efficiency in a specific point on a plant target. Currently, NPs have been studied to be applied to various species of monocotyledonous and dicotyledonous plants. Some NPs properties such as concentration, shape, size, composition and surface functionality have the ability to regulate the NPs growth effects on the plant during germination and seedling stages under controlled and field conditions. Furthermore, several studies have tried to explain the mechanism of uptake, translocation and accumulation of NPs inside the plant at the organ and cell level, but further studies are needed to determine specific mechanisms and exact action. Nevertheless, evaluation of the toxicity effects of NPs on physiological indexes of the plant is needed to determine the effective dose without producing adverse effects on the plant and food chain. It is noteworthy that studies have indicated that nanoparticles, regardless of their nature, can be efficient inducers of plant growth. However, a series of laboratory tests are required to optimize their application conditions and their specific physiological impact on plants. In this review, we summarize the knowledge about NPs application to induce plant growth to direct future studies in order to propose NPs for technological innovation.


Assuntos
Nanopartículas/administração & dosagem , Desenvolvimento Vegetal/efeitos dos fármacos , Nanopartículas/toxicidade , Nanotecnologia , Plantas/efeitos dos fármacos , Plantas/metabolismo
8.
Nanomedicine ; 24: 102130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760163

RESUMO

Many studies have shown that silver nanoparticles (AgNP) induce oxidative stress, and it is commonly assumed that this is the main mechanism of AgNP cytotoxicity. Most of these studies rely on antioxidants to establish this cause-and-effect relationship; nevertheless, details on how these antioxidants interact with the AgNP are often overlooked. This work aimed to investigate the molecular mechanisms underlying the use of antioxidants with AgNP nanoparticles. Thus, we studied the molecular interaction between the thiol-antioxidants (N-acetyl-L-Cysteine, L-Cysteine, and glutathione) or non-thiol-antioxidants (Trolox) with chemically and biologically synthesized AgNP. Both antioxidants could mitigate ROS production in Huh-7 hepatocarcinoma cells, but only thiol-antioxidants could prevent the cytotoxic effect, directly binding to the AgNP leading to aggregation. Our findings show that data interpretation might not be straightforward when using thiol-antioxidants to study the interactions between metallic nanoparticles and cells. This artifact exemplifies potential pitfalls that could hinder the progress of nanotechnology and the understanding of the nanotoxicity mechanism.


Assuntos
Antioxidantes/química , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Nanotecnologia/métodos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/química
9.
Molecules ; 25(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022944

RESUMO

Hesperidin, a secondary orange (Citrus sinensis) metabolite, was extracted from orange bagasse. No organic solvents or additional energy consumption were used in the clean and sustainable process. Hesperidin purity was approximately 98% and had a yield of 1%. Hesperidin is a known supplement due to antioxidant, chelating, and anti-ageing properties. Herein, hesperidin application to eliminate dark eye circles, which are sensitive and thin skin regions, was studied. In addition, the proposed method for its aqueous extraction was especially important for human consumption. Further, the most effective methods for hesperidin nanonization were explored, after which the nanoemulsions were incorporated into a cream formulation that was formulated for a tropical climate. Silky cream formulations (oil in water) were tested in vitro on artificial 3D skin from cultured cells extracted from skin residues after plastic surgery. The proposed in vitro assay avoided tests of the different formulations in human volunteers and animals. It was shown that one of the nanonized hesperidin formulations was the most skin-friendly and might be used in cosmetics.


Assuntos
Envelhecimento/fisiologia , Hesperidina/isolamento & purificação , Hesperidina/farmacologia , Nanopartículas/química , Envelhecimento/efeitos dos fármacos , Quelantes/farmacologia , Colagenases/metabolismo , Emulsões/química , Hesperidina/química , Hesperidina/toxicidade , Humanos , Masculino , Nanopartículas/ultraestrutura , Tamanho da Partícula , Creme para a Pele/farmacologia , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Termodinâmica
10.
JAAPA ; 33(8): 44-47, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32740114

RESUMO

Syphilis is on the rise in every age and ethnicity group across the United States. The rate of congenital syphilis has started to rise as well, increasing the need for syphilis screening before pregnancy occurs. Raising awareness for syphilis screening, especially among sexually active women, is important, as the implications of this disease have lifelong effects for mother and child.


Assuntos
Programas de Rastreamento/métodos , Complicações Infecciosas na Gravidez/prevenção & controle , Sífilis Congênita/prevenção & controle , Sífilis/diagnóstico , Sífilis/prevenção & controle , Adolescente , Adulto , Antitreponêmicos/administração & dosagem , Feminino , Humanos , Masculino , Penicilina G/administração & dosagem , Penicilina G Benzatina/administração & dosagem , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/microbiologia , Sífilis/tratamento farmacológico , Sífilis/microbiologia , Sorodiagnóstico da Sífilis/métodos , Treponema pallidum/isolamento & purificação , Treponema pallidum/patogenicidade , Adulto Jovem
11.
Biotechnol Lett ; 41(12): 1433-1437, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650420

RESUMO

OBJECTIVES: To examine the synergistic antibacterial activity of violacein and silver nanoparticles (AgNPs) against ATCC bacteria, Staphylococcus aureus, Escherichia coli and two bacteria isolated from bovine mastitis. METHODS: Violacein from Chromobacterium violaceum and biogenic AgNPs from Fusarium oxysporum were evaluated in antimicrobial tests. RESULTS: E. coli isolates were not inhibited by violacein at concentrations up to 400 µM and they showed sensitivity for AgNPs between 62.5 and 250 µM. Staphylococcus aureus showed sensitivity to violacein with MIC of 200 µM, and the MIC with AgNPs between 250 µM and 125 µM. It was also tested the association between the two compounds through a concentration gradient and was observed the reduction of the MIC in the combination for both strains. CONCLUSION: The bactericidal effect of violacein against S. aureus was better when combined with AgNPs (synergistic).


Assuntos
Antibacterianos/farmacologia , Indóis/farmacologia , Nanopartículas Metálicas , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Bovinos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação
12.
World J Microbiol Biotechnol ; 35(6): 88, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134435

RESUMO

In this work, the biosynthesis of silver nanoparticles by Galega officinalis extract using AgNO3 as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against Escherichia coli, Staphylococcus aureus and Pseudomonas syringae were determined. For biosynthesis, a central composite design combined with response surface methodology was used to optimize the process parameters (pH, AgNO3 and extract concentration), and the design was assessed through the size distribution, zeta potential and polydispersity index of the nanoparticles. The results demonstrated that at pH 11, 1.6 mM of AgNO3 and 15% vv-1 of G. officinalis extract were the optimal reaction parameters. Transmission electron microscope (TEM) images and X-ray diffraction (XRD) confirmed the formation of small spherical silver nanoparticles. Antimicrobial assays showed a high inhibitory effect against E. coli, S. aureus and P. syringae, and that effect was larger with silver nanoparticles of a smaller size (23 nm). This work demonstrates that G. officinalis extract is a feasible medium for the synthesis of silver nanoparticles and that the control of the reaction parameters can determine the nanoparticle characteristics and therefore their antimicrobial effectiveness.


Assuntos
Anti-Infecciosos/metabolismo , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Galega/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pseudomonas syringae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
13.
Langmuir ; 34(44): 13296-13304, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30299102

RESUMO

Dibucaine (DBC) is one of the most potent long-acting local anesthetics, but it also has significant toxic side effects and low water solubility. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been proposed as drug-delivery systems to increase the bioavailability of local anesthetics. The purpose of the present study was to characterize SLNs and NLCs composed of cetyl palmitate or myristyl myristate, a mixture of capric and caprylic acids (for NLCs only) plus Pluronic F68 prepared for the encapsulation of DBC. We intended to provide a careful structural characterization of the nanoparticles to identify the relevant architectural parameters that lead to the desirable biological response. Initially, SLNs and NLCs were assessed in terms of their size distribution, morphology, surface charge, and drug loading. Spectroscopic techniques (infrared spectroscopy and electron paramagnetic resonance, EPR) plus small-angle X-ray scattering (SAXS) provided information on the interactions between nanoparticle components and their structural organization. The sizes of nanoparticles were in the 180 nm range with low polydispersity and negative zeta values (-25 to -46 mV). The partition coefficient of DBC between nanoparticles and water at pH 8.2 was very high (>104). EPR (with doxyl-stearate spin labels) data revealed the existence of lamellar arrangements inside the lipid nanoparticles, which was also confirmed by SAXS experiments. Moreover, the addition of DBC increased the molecular packing of both SLN and NLC lipids, indicative of DBC insertion between the lipids, in the milieu assessed by spin labels. Such structural information brings insights into understanding the molecular organization of these versatile drug-delivery systems which have already demonstrated their potential for therapeutic applications in pain control.


Assuntos
Anestésicos Locais/química , Dibucaína/química , Portadores de Fármacos/química , Nanopartículas/química , Espectroscopia de Ressonância de Spin Eletrônica , Miristatos/química , Nanopartículas/ultraestrutura , Palmitatos/química , Tamanho da Partícula , Poloxâmero/química , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Tumour Biol ; 37(10): 14049-14058, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27502397

RESUMO

Treatment of metastatic melanoma still remains a challenge, since in advanced stage it is refractory to conventional treatments. Most patients with melanoma have either B-RAF or N-RAS mutations, and these oncogenes lead to activation of the RAS-RAF-MEK-ERK and AKT signal pathway, keeping active the proliferation and survival pathways in the cell. Therefore, the identification of small molecules that block metastatic cell proliferation and induce cell death is needed. Violacein, a pigment produced by Chromobacterium violaceum found in Amazon River, has been used by our group as a biotool for scrutinizing signaling pathways associated with proliferation, survival, aggressiveness, and resistance of cancer cells. In the present study, we demonstrate that violacein diminished the viability of RAS- and RAF-mutated melanoma cells (IC50 value ∼500 nM), and more important, this effect was not abolished after treatment medium removal. Furthermore, violacein was able to reduce significantly the invasion capacity of metastatic melanoma cells in 3D culture. In the molecular context, we have shown for the first time that violacein causes a strong drop on histone deacetylase 6 expression, a proliferating activator, in melanoma cells. Besides, an inhibition of AXL and AKT was detected. All these molecular events propitiate an inhibition of autophagy, and consequently, melanoma cell death by apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , Indóis/farmacologia , Melanoma/secundário , Proteínas de Membrana/genética , Mutação/genética , Western Blotting , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Células Tumorais Cultivadas
15.
Crit Rev Biotechnol ; 36(3): 447-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25641329

RESUMO

Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst-nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix-enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.


Assuntos
Sistemas de Liberação de Medicamentos , Enzimas Imobilizadas , Nanomedicina
16.
BMC Cancer ; 16: 422, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27389279

RESUMO

BACKGROUND: The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. RESULTS: Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. CONCLUSIONS: Thus, P-MAPA immunotherapy could be considered an important therapeutic strategy for NMIBC, as well as, opens a new perspective for treatment of patients that are refractory or resistant to BCG intravesical therapy.


Assuntos
Fatores Imunológicos/administração & dosagem , Ácidos Linoleicos/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Compostos Organofosforados/administração & dosagem , Receptores Toll-Like/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Animais , Vacina BCG/administração & dosagem , Vacina BCG/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Ácidos Linoleicos/farmacologia , Invasividade Neoplásica , Neoplasias Experimentais , Neovascularização Patológica/metabolismo , Compostos Organofosforados/farmacologia , Ratos , Regulação para Cima , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/metabolismo
17.
Med Mycol ; 54(4): 428-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26092103

RESUMO

Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 µg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Fluconazol/farmacologia , Fusarium/metabolismo , Nanopartículas Metálicas/química , Prata/farmacologia , Antifúngicos/química , Farmacorresistência Fúngica , Fluconazol/química , Plâncton/efeitos dos fármacos , Prata/química
18.
Appl Microbiol Biotechnol ; 100(15): 6555-6570, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289481

RESUMO

The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Bactérias/metabolismo , Fungos/metabolismo , Testes de Sensibilidade Microbiana , Plantas/metabolismo , Prata/química , Compostos de Prata/química , Compostos de Prata/farmacologia
19.
Nanomedicine ; 12(3): 789-799, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724539

RESUMO

Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed. FROM THE CLINICAL EDITOR: Antibacterial effect of nanoscopic silver generated a lot of interest both in research projects and in practical applications. However, the exact mechanism is still will have to be elucidated. This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize our current knowledge in the field of antibacterial activity of silver nanoparticles.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Radicais Livres/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
20.
J Nanobiotechnology ; 13: 55, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337542

RESUMO

Silver nanoparticles are one of the most important materials in the nanotechnology industry. Additionally, the protein corona is emerging as a key entity at the nanobiointerface; thus, a comprehensive understanding of the interactions between proteins and silver nanoparticles is imperative. Therefore, literature reporting studies involving both single molecule protein coronas (i.e., bovine and human serum albumin, tubulin, ubiquitin and hyaluronic-binding protein) and complex protein coronas (i.e., fetal bovine serum and yeast extract proteins) were selected to demonstrate the effects of protein coronas on silver nanoparticle cytotoxicity and antimicrobial activity. There is evidence that distinct and differential protein components may yield a "protein corona signature" that is related to the size and/or surface curvature of the silver nanoparticles. Therefore, the formation of silver nanoparticle protein coronas together with the biological response to these coronas (i.e., oxidative stress, inflammation and cytotoxicity) as well as other cellular biophysicochemical mechanisms (i.e., endocytosis, biotransformation and biodistribution) will be important for nanomedicine and nanotoxicology. Researchers may benefit from the information contained herein to improve biotechnological applications of silver nanoparticles and to address related safety concerns. In summary, the main aim of this mini-review is to highlight the relationship between the formation of silver nanoparticle protein coronas and toxicity.


Assuntos
Antibacterianos/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Prata/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Humanos , Modelos Moleculares , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Prata/química , Prata/farmacologia , Prata/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA