RESUMO
Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.
Assuntos
DNA Helicases/metabolismo , DNA Helicases/fisiologia , Reparo do DNA/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/fisiologia , Feminino , Masculino , Proteólise , Imagem Individual de Molécula/métodos , Xenopus laevis/metabolismoRESUMO
DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.
Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , Replicação do DNA , Animais , Extratos Celulares/química , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , Óvulo/química , XenopusRESUMO
Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass.
Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Xenopus laevisRESUMO
DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.
Assuntos
Reparo do DNA , Replicação do DNA , DNA/biossíntese , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , DNA/química , DNA/genética , Feminino , Masculino , Conformação de Ácido Nucleico , Complexo de Endopeptidases do Proteassoma/genética , Domínios e Motivos de Interação entre Proteínas , Proteólise , Células Sf9 , Relação Estrutura-Atividade , Ubiquitinação , Proteínas de Xenopus/genética , Xenopus laevis/genéticaRESUMO
DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.
Assuntos
Reparo do DNA , Replicação do DNA , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Instabilidade Genômica , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sumoilação , Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI-FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)-mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error-free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error-free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI-deficient cells are exquisitely sensitive to ICL-inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR-mediated ICL repair is defective, and breaks are instead re-ligated by polymerase θ-dependent microhomology-mediated end-joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error-free ICL repair.
Assuntos
Anemia de Fanconi , DNA , Dano ao DNA , Reparo do DNA , Replicação do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , HumanosRESUMO
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Assuntos
Dano ao DNA , Reparo do DNA , DNA , Formaldeído , Formaldeído/toxicidade , Humanos , DNA/metabolismo , AnimaisRESUMO
Colibactin is a secondary metabolite produced by bacteria present in the human gut and is implicated in the progression of colorectal cancer and inflammatory bowel disease. This genotoxin alkylates deoxyadenosines on opposite strands of host cell DNA to produce DNA interstrand cross-links (ICLs) that block DNA replication. While cells have evolved multiple mechanisms to resolve ("unhook") ICLs encountered by the replication machinery, little is known about which of these pathways promote resistance to colibactin-induced ICLs. Here, we use Xenopus egg extracts to investigate replication-coupled repair of plasmids engineered to contain site-specific colibactin-ICLs. We show that replication fork stalling at a colibactin-ICL leads to replisome disassembly and activation of the Fanconi anemia ICL repair pathway, which unhooks the colibactin-ICL through nucleolytic incisions. These incisions generate a DNA double-strand break intermediate in one sister chromatid, which can be repaired by homologous recombination, and a monoadduct ("ICL remnant") in the other. Our data indicate that translesion synthesis past the colibactin-ICL remnant depends on Polη and a Polκ-REV1-Polζ polymerase complex. Although translesion synthesis past colibactin-induced DNA damage is frequently error-free, it can introduce T>N point mutations that partially recapitulate the mutation signature associated with colibactin exposure in vivo. Taken together, our work provides a biochemical framework for understanding how cells tolerate a naturally-occurring and clinically-relevant ICL.
RESUMO
DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.
Assuntos
Reparo do DNA , Replicação do DNA , DNA Topoisomerases Tipo I , Poli(ADP-Ribose) Polimerase-1 , Poli ADP Ribosilação , Animais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , DNA Topoisomerases Tipo I/metabolismo , Xenopus laevis , Ubiquitinação , Humanos , DNA/metabolismo , Dano ao DNA , Camptotecina/farmacologia , Processamento de Proteína Pós-Traducional , DNA de Cadeia Simples/metabolismo , Proteínas de Xenopus/metabolismoRESUMO
The hexameric AAA+ ATPase p97/VCP functions as an essential mediator of ubiquitin-dependent cellular processes, extracting ubiquitylated proteins from macromolecular complexes or membranes by catalyzing their unfolding. p97 is directed to ubiquitylated client proteins via multiple cofactors, most of which interact with the p97 N-domain. Here, we discover that FAM104A, a protein of unknown function also named VCF1 (VCP/p97 nuclear Cofactor Family member 1), acts as a p97 cofactor in human cells. Detailed structure-function studies reveal that VCF1 directly binds p97 via a conserved α-helical motif that recognizes the p97 N-domain with unusually high affinity, exceeding that of other cofactors. We show that VCF1 engages in joint p97 complex formation with the heterodimeric primary p97 cofactor UFD1-NPL4 and promotes p97-UFD1-NPL4-dependent proteasomal degradation of ubiquitylated substrates in cells. Mechanistically, VCF1 indirectly stimulates UFD1-NPL4 interactions with ubiquitin conjugates via its binding to p97 but has no intrinsic affinity for ubiquitin. Collectively, our findings establish VCF1 as an unconventional p97 cofactor that promotes p97-dependent protein turnover by facilitating p97-UFD1-NPL4 recruitment to ubiquitylated targets.
Assuntos
Proteínas de Ciclo Celular , Ubiquitina , Humanos , Ligação Proteica , Ubiquitina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMO
Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1-Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ's catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.
RESUMO
Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation.
Assuntos
DNA Helicases/fisiologia , Replicação do DNA , DNA , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/química , Dano ao DNA , DNA Helicases/química , Reparo do DNA , Regulação da Expressão Gênica , Células HeLa , Humanos , Cinética , Testes para Micronúcleos , Microscopia de Fluorescência/métodosRESUMO
Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.
Assuntos
Sistemas CRISPR-Cas , Tolerância a Medicamentos , Exodesoxirribonucleases , Anemia de Fanconi , Formaldeído , Humanos , DNA , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Anemia de Fanconi/induzido quimicamente , Anemia de Fanconi/genética , Formaldeído/toxicidade , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Tolerância a Medicamentos/genéticaRESUMO
Ubiquitin widely modifies proteins, thereby regulating most cellular functions. The complexity of ubiquitin signalling necessitates unbiased methods enabling global detection of dynamic protein ubiquitylation. Here, we describe UBIMAX (UBiquitin target Identification by Mass spectrometry in Xenopus egg extracts), which enriches ubiquitin-conjugated proteins and quantifies regulation of protein ubiquitylation under precise and adaptable conditions. We benchmark UBIMAX by investigating DNA double-strand break-responsive ubiquitylation events, identifying previously known targets and revealing the actin-organizing protein Dbn1 as a major target of DNA damage-induced ubiquitylation. We find that Dbn1 is targeted for proteasomal degradation by the SCFß-Trcp1 ubiquitin ligase, in a conserved mechanism driven by ATM-mediated phosphorylation of a previously uncharacterized ß-Trcp1 degron containing an SQ motif. We further show that this degron is sufficient to induce DNA damage-dependent protein degradation of a model substrate. Collectively, we demonstrate UBIMAX's ability to identify targets of stimulus-regulated ubiquitylation and reveal an SCFß-Trcp1-mediated ubiquitylation mechanism controlled directly by the apical DNA damage response kinases.
Assuntos
Actinas , Ubiquitina , Ubiquitina/metabolismo , Actinas/metabolismo , Ubiquitinação , Transdução de Sinais , Dano ao DNARESUMO
Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be identified by this approach. The success of this approach will allow us to create a more complete understanding of telomere maintenance and have broad applicability.
Assuntos
Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Reagentes de Ligações Cruzadas/farmacologia , Espectrometria de Massas/métodos , Proteínas de Ligação a Telômeros/metabolismo , Extratos Celulares , Linhagem Celular , Imunofluorescência , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Nanotecnologia , Proteínas Recombinantes de Fusão/metabolismo , Complexo Shelterina , Coloração e Rotulagem , Proteínas de Ligação a Telômeros/isolamento & purificaçãoRESUMO
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
RESUMO
Telomeres are terminal repetitive DNA sequences whose stability requires the coordinated actions of telomere-binding proteins and the DNA replication and repair machinery. Recently, we demonstrated that the DNA replication and repair protein Flap endonuclease 1 (FEN1) is required for replication of lagging strand telomeres. Here, we demonstrate for the first time that FEN1 is required for efficient re-initiation of stalled replication forks. At the telomere, we find that FEN1 depletion results in replicative stress as evidenced by fragile telomere expression and sister telomere loss. We show that FEN1 participation in Okazaki fragment processing is not required for efficient telomere replication. Instead we find that FEN1 gap endonuclease activity, which processes DNA structures resembling stalled replication forks, and the FEN1 interaction with the RecQ helicases are vital for telomere stability. Finally, we find that FEN1 depletion neither impacts cell cycle progression nor in vitro DNA replication through non-telomeric sequences. Our finding that FEN1 is required for efficient replication fork re-initiation strongly suggests that the fragile telomere expression and sister telomere losses observed upon FEN1 depletion are the direct result of replication fork collapse. Together, these findings suggest that other nucleases compensate for FEN1 loss throughout the genome during DNA replication but fail to do so at the telomere. We propose that FEN1 maintains stable telomeres by facilitating replication through the G-rich lagging strand telomere, thereby ensuring high fidelity telomere replication.
Assuntos
Replicação do DNA/fisiologia , DNA/metabolismo , Endonucleases Flap/metabolismo , Telômero/metabolismo , Ciclo Celular/fisiologia , DNA/genética , Endonucleases Flap/genética , Células HeLa , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/genéticaRESUMO
Temozolomide (TMZ), a DNA methylating agent, is the primary chemotherapeutic drug used in glioblastoma treatment. TMZ induces mostly N-alkylation adducts (N7-methylguanine and N3-methyladenine) and some O6-methylguanine (O6mG) adducts. Current models propose that during DNA replication, thymine is incorporated across from O6mG, promoting a futile cycle of mismatch repair (MMR) that leads to DNA double-strand breaks (DSBs). To revisit the mechanism of O6mG processing, we reacted plasmid DNA with N-methyl-N-nitrosourea (MNU), a temozolomide mimic, and incubated it in Xenopus egg-derived extracts. We have shown that in this system, MMR proteins are enriched on MNU-treated DNA and we observed robust, MMR-dependent, repair synthesis. Our evidence also suggests that MMR, initiated at O6mG:C sites, is strongly stimulated in cis by repair processing of other lesions, such as N-alkylation adducts. Importantly, MNU-treated plasmids display DSBs in extracts, the frequency of which increases linearly with the square of alkylation dose. We suggest that DSBs result from two independent repair processes, one involving MMR at O6mG:C sites and the other involving base excision repair acting at a nearby N-alkylation adduct. We propose a new, replication-independent mechanism of action of TMZ, which operates in addition to the well-studied cell cycle-dependent mode of action.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/metabolismo , Temozolomida/metabolismo , Animais , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Expressão Gênica , Humanos , Temozolomida/farmacologia , XenopusRESUMO
Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers.