Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 557-569, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248338

RESUMO

Modulation of the human gut microbiome has become an area of interest in the nutraceutical space. We explored the effect of the novel foundational nutrition supplement AG1® on the composition of human microbiota in an in vitro experimental design. Employing the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) model, AG1® underwent digestion, absorption, and subsequent colonic microenvironment simulation under physiologically relevant conditions in healthy human fecal inocula. Following 48 h of colonic simulation, the gut microbiota were described using shallow shotgun, whole genome sequencing. Metagenomic data were used to describe changes in community structure (alpha diversity, beta diversity, and changes in specific taxa) and community function (functional heterogeneity and changes in specific bacterial metabolic pathways). Results showed no significant change in alpha diversity, but a significant effect of treatment and donor and an interaction between the treatment and donor effect on structural heterogeneity likely stemming from the differential enrichment of eight bacterial taxa. Similar findings were observed for community functional heterogeneity likely stemming from the enrichment of 20 metabolic pathways characterized in the gene ontology term database. It is logical to conclude that an acute dose of AG1 has significant effects on gut microbial composition that may translate into favorable effects in humans.

2.
Eur J Nutr ; 61(1): 413-428, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34396468

RESUMO

PURPOSE: Cereboost®, an American ginseng extract, has shown improved short-term memory and attention/alertness in healthy young and middle-aged individuals, potentially via modulation of the gut microbiome and upregulation of neurotransmitters such as acetylcholine. Here, we explored the effects of Cereboost® on cognition and mood in the first 6 h post intervention (acute), after 2 weeks daily supplementation (chronic), and whether 2 weeks daily supplementation altered the response to a single acute dose (acute-on-chronic). A concurrent in vitro study evaluated effects of repeated Cereboost® administration on human gut microbiota. METHODS: Cognitive effects of Cereboost® were assessed using a double-blind, randomized, placebo-controlled clinical trial, with 61 healthy young adults. Modulation of the gut microbiome was concurrently modelled using the Simulator of the Human Microbial Ecosystem (SHIME®), using a young adult donor. RESULTS: Consistent with previous findings, Cereboost® improved working memory and attention during the immediate postprandial period; effects that were amplified following two weeks' treatment (acute-on-chronic) compared to acute testing alone. Chronic supplementation improved cognition on an acetylcholine-sensitive attention task and improved mental fatigue and self-assurance aspects of mood. The parallel in vitro study revealed significantly increased acetate, propionate, and butyrate levels in simulated proximal and distal colon regions, linked with observed increases in Akkermansia muciniphila and Lactobacillus. CONCLUSION: This study confirmed the promising effects of Cereboost® on cognitive function and mood, while suggesting a possible link to alterations of the gut microbiome and modulation of acetylcholine. Further studies will be required to unravel the underlying mechanisms that are involved. REGISTRATION: The study was pre-registered at ClinicalTrials.gov on 6th July 2018 (Identifier: NCT03579095).


Assuntos
Microbioma Gastrointestinal , Panax , Cognição , Método Duplo-Cego , Ecossistema , Humanos , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Adulto Jovem
3.
Z Gastroenterol ; 59(5): 423-437, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33979845

RESUMO

BACKGROUND: Okoubaka aubrevillei is used in traditional West African medicine and in homeopathy for treatment and prevention of several gastrointestinal problems. The aim of this in vitro study was to evaluate the effect of repeated doses of two Okoubaka products (10 % ethanolic tincture, mother tincture (MT); 3rd decimal potency, 3X) on the microbial activity of physiological human colon microbiota using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and to investigate any preventive effect against infections with diarrhea-causing pathogens. METHODS: Upon inoculation with fecal microbiota from a healthy donor, 4 parallel proximal colon compartments of the SHIME were treated either with Okoubaka MT, Okoubaka 3X, ethanol control or blank control for 7 days. Using the Okoubaka-adapted microbial community from SHIME, 48 h challenge tests were performed with enterotoxigenic Escherichia coli (ETEC) and Salmonella enteritidis in 4 different doses (103-108 colony forming units as typical in vivo infectious doses). Pathogen concentrations, short-chain fatty acids (SCFAs) and branched SCFA production were measured in triplicate at 0, 24 and 48 h. RESULTS: In the challenge tests, both Okoubaka products were able to restrict the colonization of ETEC and Salmonella at 3 of the 4 pathogen doses (except the highest doses), with a stronger anti-pathogenic effect for MT, which included a reduction of 2.0 log-units of ETEC (p < 0.0001) and 1.1 log-units of Salmonella (p < 0.0001). Total SCFA levels remained unaffected, but butyrate increased during the first 24 h (p < 0.0001 for ETEC), accompanied by decreased acetate production. CONCLUSION: We observed in vitro a systemic activating effect of Okoubaka on intestinal microbiome resistance, which resulted in an anti-pathogenic effect, especially against ETEC. We hypothesize that the mode of action in vivo is also based on systemic regulative effects.


Assuntos
Escherichia coli Enterotoxigênica , Microbioma Gastrointestinal , Ecossistema , Trato Gastrointestinal , Humanos , Intestinos
4.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892504

RESUMO

Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Goma Arábica , Prebióticos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Goma Arábica/farmacologia , Fibras na Dieta/farmacologia , Suplementos Nutricionais , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Fermentação , Bactérias/efeitos dos fármacos , Bactérias/classificação
5.
J Diet Suppl ; : 1-19, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087597

RESUMO

Prebiotic and probiotic combinations may lead to a synbiotic effect, demonstrating superior health benefits over either component alone. Using the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) model, the effects of repeated supplementation with inulin (prebiotic, which is expected to provide a source of nutrition for the live microorganisms in the gut to potentially support optimal digestive health), Bacillus coagulans lactospore (probiotic), and a low and high dose of a synbiotic combination of the two on the gut microbial community activity and composition were evaluated. Test product supplementation increased the health-promoting short-chain fatty acids acetate and butyrate compared with levels recorded during the control period, demonstrating a stimulation of saccharolytic fermentation. This was likely the result of the increased abundance of several saccharolytic bacterial groups, including Megamonas, Bifidobacterium, and Faecalibacterium, following test product supplementation. The stimulation of acetate and butyrate production, as well as the increased abundance of saccharolytic bacterial groups were more evident in treatment week 3 compared with treatment week 1, demonstrating the value of repeated product administration. Further, the synbiotic formulations tended to result in greater changes compared with prebiotic or probiotic alone. Overall, the findings demonstrate a synbiotic potential for inulin and B. coagulans lactospore and support repeated administration of these products, indicating a potential for promoting gut health.

6.
Nutrients ; 16(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203927

RESUMO

Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).


Assuntos
Colo , Microbioma Gastrointestinal , Probióticos , Trato Gastrointestinal Superior , Humanos , Colo/microbiologia , Trato Gastrointestinal Superior/microbiologia , Viabilidade Microbiana , Bactérias/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo
7.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065031

RESUMO

Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.

8.
Front Microbiol ; 15: 1358456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410391

RESUMO

The yeast-based postbiotic EpiCor is a well-studied formulation, consisting of a complex mixture of bioactive molecules. In clinical studies, EpiCor postbiotic has been shown to reduce intestinal symptoms in a constipated population and support mucosal defense in healthy subjects. Anti-inflammatory potential and butyrogenic properties have been reported in vitro, suggesting a possible link between EpiCor's gut modulatory activity and immunomodulation. The current study used a standardized in vitro gut model, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), to obtain a deeper understanding on host-microbiome interactions and potential microbiome modulation following repeated EpiCor administration. It was observed that EpiCor induced a functional shift in carbohydrate fermentation patterns in the proximal colon environment. Epicor promoted an increased abundance of Bifidobacterium in both the proximal and distal colon, affecting overall microbial community structure. Co-occurrence network analysis at the phylum level provided additional evidence of changes in the functional properties of microbial community promoted by EpiCor, increasing positive associations between Actinobacteria with microbes belonging to the Firmicutes phylum. These results, together with a significant increase in butyrate production provide additional support of EpiCor benefits to gut health. Investigation of host-microbiome interactions confirmed the immunomodulatory potential of the applied test product. Specific microbial alterations were observed in the distal colon, with metabotyping indicating that specific metabolic pathways, such as bile acid and tryptophan metabolism, were affected following EpiCor supplementation. These results, especially considering many effects were seen distally, further strengthen the position of EpiCor as a postbiotic with health promoting functionality in the gut, which could be further assessed in vivo.

9.
Foods ; 13(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39335943

RESUMO

Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.

10.
Nutrients ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36771360

RESUMO

Proton pump inhibitors (PPIs) are commonly prescribed medications associated with changes in the gut microbiome and dysbiosis when used long-term. Probiotics, such as Enterogermina® (containing four strains of Bacillus clausii) reduce side effects from triple therapy with PPI+antibiotics. We aim to assess the ability of this probiotic in preventing and/or treating the dysbiosis induced by PPI use. Faecal samples from six healthy donors were used to colonise a Triple-Mucosal-Simulator of the Human Intestinal Microbial Ecosystem® model with added ileal compartment. Changes in the microbial community composition and metabolite production were measured for PPI alone (control), PPI+Enterogermina (preventative), and Enterogermina treatment after PPI (curative). Differences were assessed by one-way ANOVA with Tukey's multiple comparisons test. The model was shown to replicate some of the effects of long-term PPI use. There were significant changes in microbial diversity and an increase in butyrate levels in the preventative and curative arms, indicative of a beneficial effect to gut health. Probiotic use countered some of the effects of PPI use: Streptococcus bovis levels increased in the control arm but reduced following probiotic treatment. These results show that probiotic treatment with B. clausii may have beneficial effects on the gut microbiota following PPI treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Disbiose/induzido quimicamente , Inibidores da Bomba de Prótons/efeitos adversos , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA