Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Bioorg Med Chem ; 114: 117964, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39454560

RESUMO

The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.


Assuntos
Indóis , Simulação de Acoplamento Molecular , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/química , Humanos , Indóis/química , Indóis/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Halogenação , Relação Dose-Resposta a Droga , Citocromo P-450 CYP1A1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
Bioorg Chem ; 144: 107137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245951

RESUMO

Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.


Assuntos
Colite , Humanos , Animais , Camundongos , Receptor de Pregnano X/agonistas , Células CACO-2 , Colite/induzido quimicamente , Receptores Citoplasmáticos e Nucleares , Anti-Inflamatórios/uso terapêutico
3.
J Reconstr Microsurg ; 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374922

RESUMO

BACKGROUND: Modern trends in reconstructive surgery involve the use of free perforator flaps to reduce the donor site morbidity. The course of perforator vessels has a great anatomic variability and demands detailed knowledge of the anatomical relationships and the variability of the course of the perforators. The numerous modifications to perforator nomenclature proposed by various authors resulted in confusion rather than simplification. In our study, we focused on the hypothesis that a septocutaneous perforator traverses from the given source vessel to the deep fascia adherent to but not to within the septum itself. METHODS: Sixty-nine septocutaneous perforators from three different limb donor sites (lateral arm flap, anterolateral thigh flap, and radial forearm free flap) were collected from the gross pathology specimens of 14 fresh cadavers. The gross picture and the cross-sections with the histological cross-sections on different levels were examined to determine the position of the vessel to the septal tissue. RESULTS: Of the observed 69 septal perforators, 61 (88.5%) perforators were adherent to but not within the septum. The remaining eight (12.5%) perforators passed through the septum. All these eight perforators were found in multiple different cross-section levels (2 of 19 in lateral arm flap, 3 of 27 in anterolateral thigh flap, and 3 of 23 in radial forearm free flap). CONCLUSION: Although septocutaneous vessels appear identical macroscopically, microscopically two types of vessels with paraseptal and intraseptal pathways are observed. The majority of these vessels are merely adherent to the septum having a paraseptal pathway, while a minority are within the septum and are "true" septocutaneous perforators. It is advisable to dissect with a piece of the septum in order to avoid damage or injury to the perforator.

4.
Gut ; 72(7): 1296-1307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270778

RESUMO

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Triptofano/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Intestinos , Inflamação
5.
Drug Metab Dispos ; 51(2): 219-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184080

RESUMO

Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.


Assuntos
Receptores de Esteroides , Receptores de Esteroides/metabolismo , Xenobióticos/metabolismo , Ligantes , Intestinos , Proteínas de Transporte
6.
Inorg Chem ; 62(39): 15875-15890, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713240

RESUMO

Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{µ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{µ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{µ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.

7.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958638

RESUMO

Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Dibenzodioxinas Policloradas/efeitos adversos , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores
8.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768617

RESUMO

Motivated by the clinical success of gold(I) metallotherapeutic Auranofin in the effective treatment of both inflammatory and cancer diseases, we decided to prepare, characterize, and further study the [Au(kin)(PPh3)] complex (1), where Hkin = kinetin, 6-furfuryladenine, for its in vitro anti-cancer and anti-inflammatory activities. The results revealed that the complex (1) had significant in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, and THP-1), with IC50 ≈ 1-5 µM, which was even significantly better than that for the conventional platinum-based drug Cisplatin while comparable with Auranofin. Although its ability to inhibit transcription factor NF-κB activity did not exceed the comparative drug Auranofin, it has been found that it is able to positively influence peroxisome-proliferator-activated receptor-gamma (PPARγ), and as a consequence of this to have the impact of moderating/reducing inflammation. The cellular effects of the complex (1) in A2780 cancer cells were also investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential, and shotgun proteomic analysis. Proteomic analysis of R2780 cells treated with complex (1) and starting compounds revealed possible different places of the effect of the studied compounds. Moreover, the time-dependent cellular accumulation of copper was studied by means of the mass spectrometry study with the aim of exploring the possible mechanisms responsible for its biological effects.


Assuntos
Ouro , Neoplasias Ovarianas , Humanos , Feminino , Ouro/farmacologia , Ouro/química , Cinetina/farmacologia , Linhagem Celular Tumoral , Reguladores de Crescimento de Plantas/farmacologia , PPAR gama , Auranofina/farmacologia , Proteômica , Neoplasias Ovarianas/metabolismo , Apoptose
9.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569310

RESUMO

Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.


Assuntos
Alérgenos , Asma , Humanos , Ferro/metabolismo , Caseínas , Quercetina , Clatrina , Alternaria/metabolismo
10.
Clin Exp Allergy ; 52(3): 426-441, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773648

RESUMO

BACKGROUND: Previously, the protective farm effect was imitated using the whey protein beta-lactoglobulin (BLG) that is spiked with iron-flavonoid complexes. Here, we formulated for clinical translation a lozenge as food for special medical purposes (FSMP) using catechin-iron complexes as ligands for BLG. The lozenge was tested in vitro and in a therapeutical BALB/c mice model. METHODS: Binding of iron-catechin into BLG was confirmed by spectroscopy and docking calculations. Serum IgE binding of children allergic or tolerating milk was assessed to loaded (holo-) versus empty (apo-) BLG and for human mast cell degranulation. BLG and Bet v 1 double-sensitized mice were orally treated with the holoBLG or placebo lozenge, and immunologically analysed after systemic allergen challenge. Human PBMCs of pollen allergic subjects were flow cytometrically assessed after stimulation with apoBLG or holoBLG using catechin-iron complexes as ligands. RESULTS: One major IgE and T cell epitope were masked by catechin-iron complexes, which impaired IgE binding of milk-allergic children and degranulation of mast cells. In mice, only supplementation with the holoBLG lozenge reduced clinical reactivity to BLG and Bet v 1, promoted Tregs, and suppressed antigen presentation. In allergic subjects, stimulation of PBMCs with holoBLG led to a significant increase of intracellular iron in circulating CD14+ cells with significantly lower expression of HLADR and CD86 compared to their stimulation with apoBLG. CONCLUSION: The FSMP lozenge targeted antigen presenting cells and dampened immune activation in human immune cells and allergic mice in an antigen-non-specific manner, thereby conferring immune resilience against allergic symptoms.


Assuntos
Hipersensibilidade a Leite , Alérgenos , Animais , Suplementos Nutricionais , Fazendas , Humanos , Lactoglobulinas/química , Camundongos , Camundongos Endogâmicos BALB C
11.
Bioorg Chem ; 126: 105901, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671646

RESUMO

Glycoconjugation is a powerful tool to improve the anticancer activity of metal complexes. Herein, we modified commercial arylphosphanes with carbohydrate-derived fragments for the preparation of novel glycoconjugated ruthenium(II) p-cymene complexes. Specifically, d-galactal and d-allal-derived vinyl epoxides (VEß and VEα) were coupled with (2-hydroxyphenyl)diphenylphosphane, affording the 2,3-unsaturated glycophosphanes 1ß and 1α. Ligand exchange with [Ru(C2O4)(η6-p-cymene)(H2O)] gave the glycoconjugated complexes Ru1ß and Ru1α which were subsequently dihydroxylated with OsO4/N-methylmorpholine N-oxide to Ru2ß and Ru2α containing O-benzyl d-mannose and d-gulose units respectively. Besides, aminoethyl tetra-O-acetyl-ß-d-glucopyranoside was condensed with borane-protected (4-diphenylphosphanyl)benzoic acid by HATU/DIPEA under MW heating, to afford the amide 3∙BH3. Zemplén deacylation with MeONa/MeOH gave the deprotected d-glucopyranoside derivative 4∙BH3. The glycoconjugated phosphane complexes Ru3 and Ru4 were obtained by reaction of the phosphane-boranes 3∙BH3 and 4∙BH3 with [Ru(C2O4)(η6-p-cymene)(H2O)]. The employed synthetic strategies were devised to circumvent unwanted phosphine oxidation. The compounds were purified by silica chromatography, isolated in high yield and purity and characterized by analytical and spectroscopic (IR and multinuclear NMR) techniques. The behaviour of the six glycoconjugated Ru complexes in aqueous solutions was assessed by NMR and MS measurements. All compounds were screened for their in vitro cytotoxicity against A2780/A2780R human ovarian and MCF7 breast cancer cell lines, revealing a significant cytotoxicity for complexes containing the 2,3-unsaturated glycosyl unit (Ru1ß, Ru1α). Additional studies on five other human cancer cells, as well as time-dependent toxicity and cell-uptake analyses on ovarian cancer cells, confirmed the prominent activity of these two compounds - higher than cisplatin - and the better performance of the ß anomer. However, Ru1ß, Ru1α did not show preferential activity against cancer cells with respect to fetal lung fibroblast and human embryonic kidney cells as models of normal cells. The effects of the two ruthenium glycoconjugated compounds in A2780 ovarian cancer cells were further investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential. The latter is a relevant factor in the mechanism of action of the highly cytotoxic Ru1ß, inducing cell death by apoptosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Rutênio , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Humanos , Ligantes , Fosfinas , Rutênio/química , Rutênio/farmacologia
12.
World J Surg Oncol ; 20(1): 288, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076218

RESUMO

BACKGROUND: Although syringoma is a common benign tumour of the sudoriferous gland, there is also an extremely rare malignant form known as syringoid eccrine carcinoma (SEC). SEC usually exhibits slow growth with deep invasion and a frequent tendency to relapse. The treatment of choice is radical wide resection, which poses a difficult reconstructive problem, especially when the tumour is located in the centre of the face. CASE PRESENTATION: In this case, a 70-year-old man was diagnosed with an SEC at the same location as a benign syringoma of the upper lip and nasal base that had undergone primary excision 7 years prior. Primary radical resection was performed with immediate Abbé flap reconstruction. Nevertheless, histology revealed positive margins, and 3 additional re-excisions were needed to achieve clear margins. Four months after the initial resection, the patient had undergone an innovative reconstruction technique including not only the Abbé flap but also a turbinate flap harvested with functional endonasal surgery and a three-stage forehead flap. CONCLUSION: To the best of our knowledge, this is the first case report of a suspect malignant transformation of a benign syringoma after 7 years. In addition, from oncoplastic and reconstructive points of view, the bilateral use of the turbinate flap for reconstructing the intranasal lining of the alar base is unusual, and the use of functional endonasal surgery in nasal reconstruction for reducing the risk of damaging the vascular supply of the flap is innovative.


Assuntos
Carcinoma , Procedimentos de Cirurgia Plástica , Neoplasias das Glândulas Sudoríparas , Siringoma , Idoso , Carcinoma/cirurgia , Testa/cirurgia , Humanos , Lábio/cirurgia , Masculino , Recidiva Local de Neoplasia/cirurgia , Neoplasias de Anexos e de Apêndices Cutâneos , Procedimentos de Cirurgia Plástica/métodos , Neoplasias Cutâneas , Neoplasias das Glândulas Sudoríparas/cirurgia , Siringoma/cirurgia , Conchas Nasais/cirurgia
13.
J Allergy Clin Immunol ; 147(1): 321-334.e4, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485264

RESUMO

BACKGROUND: Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood. OBJECTIVE: Our aims were to assess the capacity of ligand-free apoBLG versus loaded BLG (holoBLG) to protect mice against allergy by using an iron-quercetin complex as an exemplary ligand and to study the molecular mechanisms of this protection. METHODS: Binding of iron-quercetin to BLG was modeled and confirmed by spectroscopy and docking calculations. Serum IgE binding to apoBLG and holoBLG in children allergic to milk and children tolerant of milk was assessed. Mice were intranasally treated with apoBLG versus holoBLG and analyzed immunologically after systemic challenge. Aryl hydrocarbon receptor (AhR) activation was evaluated with reporter cells and Cyp1A1 expression. Treated human PBMCs and human mast cells were assessed by fluorescence-activated cell sorting and degranulation, respectively. RESULTS: Modeling predicted masking of major IgE and T-cell epitopes of BLG by ligand binding. In line with this modeling, IgE binding in children allergic to milk was reduced toward holoBLG, which also impaired degranulation of mast cells. In mice, only treatments with holoBLG prevented allergic sensitization and anaphylaxis, while sustaining regulatory T cells. BLG facilitated quercetin-dependent AhR activation and, downstream of AhR, lung Cyp1A1 expression. HoloBLG shuttled iron into monocytic cells and impaired their antigen presentation. CONCLUSION: The cargo of holoBLG is decisive in preventing allergy in vivo. BLG without cargo acted as an allergen in vivo and further primed human mast cells for degranulation in an antigen-independent fashion. Our data provide a mechanistic explanation why the same proteins can act either as tolerogens or as allergens.


Assuntos
Ferro , Lactoglobulinas , Leucócitos Mononucleares/imunologia , Mastócitos/imunologia , Hipersensibilidade a Leite/imunologia , Leite/química , Animais , Bovinos , Humanos , Ferro/química , Ferro/farmacocinética , Ferro/farmacologia , Lactoglobulinas/química , Lactoglobulinas/farmacocinética , Lactoglobulinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade a Leite/tratamento farmacológico
14.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142735

RESUMO

Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.


Assuntos
Receptores de Hidrocarboneto Arílico , Triptofano , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Indóis/metabolismo , Indóis/farmacologia , Intestinos , Ligantes , Propionatos , Piruvatos , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia
15.
Acta Chir Plast ; 64(1): 24-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35397777

RESUMO

INTRODUCTION: Our face plays an important role in communication and social life. Defects of the face have a big impact on socializing and psychics of patients with its deformities. A good esthetic outcome is an important task of each reconstructive surgery. With a modern concept of nose reconstruction, it is possible to achieve a better esthetic and functional outcome than it was possible with one phase reconstructions before. There was a specific tool missing to measure patients reported outcome and objectively evaluate benefits of nose reconstruction from a patients point of view and get reliable feedback about the whole procedure.  The goal of this paper is to develop such a questionnaire. MATERIALS AND METHODS: A pilot questionnaire was developed with literature input. The questionnaire was tested on five patients. Based on patients feedback and a review from a psychologist, the second version of the questionnaire was made. It was sent to 39 patients, who underwent nose reconstruction in the years 2016-2020. After two appeals, 34 completed questionnaires were sent back (87,2%). The final version of the questionnaire was developed after a thorough mathematic and statistical analysis of collected data. RESULTS: The group of patients who completed the questionnaire consisted of 16 females (47%) and 18 males (53%). On average, the patients were 69 years old (17-88 years). The final questionnaire is structured into six categories from A to F: A - general information defining the patient and purpose for reconstruction, B - satisfaction with esthetic outcome, C - satisfaction with function and stability, D - satisfaction with medical treatment, E - social and psychological impact, F - overall satisfaction. Most of the questions use a 5-point rating scale. CONCLUSION: The questionnaire enables the patients to provide feedback on particular aspects of the treatment and their overall satisfaction with the whole procedure and its outcome. With statistical analysis, it is possible to discover specific treatment aspects that have crucial impact on overall satisfaction with the whole procedure. A patient-reported outcome helps to improve the quality of provided health care and the quality of patient life.


Assuntos
Satisfação do Paciente , Rinoplastia , Idoso , Feminino , Humanos , Masculino , Nariz/cirurgia , Medidas de Resultados Relatados pelo Paciente , Rinoplastia/efeitos adversos , Rinoplastia/métodos , Inquéritos e Questionários , Resultado do Tratamento
16.
Bioorg Chem ; 109: 104661, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636438

RESUMO

Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Indóis/química , Indóis/farmacologia , Receptor de Pregnano X/metabolismo , Adenocarcinoma , Animais , Linhagem Celular Tumoral , Neoplasias do Colo , Desenho de Fármacos , Feminino , Hepatócitos , Humanos , Intestinos , Fígado , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Receptor de Pregnano X/química , Conformação Proteica , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299247

RESUMO

A series of new heteroleptic copper(II) complexes of the composition [Cu(L)(bpy)]NO3·2MeOH (1), [Cu(L)(dimebpy)]NO3·2H2O (2), [Cu(L)(phen)]NO3·2MeOH (3), [Cu(L)(bphen)]NO3·MeOH (4), [Cu(L)(dppz)]NO3·MeOH (5) was prepared, where HL = 3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-ene-1-yl)-4H,8H-benzo[1,2-b:3,4-b']dipyran-4-one, (pomiferin) and bpy = 2,2'-bipyridine, dimebpy = 4,4'-dimethyl-2,2'-bipyridine, phen = 1,10-phenanthroline, bphen = 4,7-diphenyl-1,10-phenanthroline, and dppz = dipyrido[3,2-a:2',3'-c]phenazine. The complexes were characterized using elemental analysis, infrared and UV/Vis spectroscopies, mass spectrometry, thermal analysis and conductivity measurements. The in vitro cytotoxicity, screened against eight human cancer cell lines (breast adenocarcinoma (MCF-7), osteosarcoma (HOS), lung adenocarcinoma (A549), prostate adenocarcinoma (PC-3), ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R), colorectal adenocarcinoma (Caco-2) and monocytic leukemia (THP-1), revealed the complexes as effective antiproliferative agents, with the IC50 values of 2.2-13.0 µM for the best performing complexes 3 and 5. All the complexes 1-5 showed the best activity against the A2780R cells (IC50 = 2.2-6.6 µM), and moreover, the complexes demonstrated relatively low toxicity on healthy human hepatocytes, with IC50 > 100 µM. The complexes were evaluated by the Annexin V/propidium iodide apoptosis assay, induction of cell cycle modifications in A2780 cells, production of reactive oxygen species (ROS), perturbation of mitochondrial membrane potential, inhibition of apoptosis and inflammation-related signaling pathways (NF-κB/AP-1 activity, NF-κB translocation, TNF-α secretion), and tested for nuclease mimicking activity. The obtained results revealed the corresponding complexes to be effective antiproliferative and anti-inflammatory agents.


Assuntos
Benzopiranos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Isoflavonas/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzopiranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/metabolismo , Cobre/farmacologia , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Isoflavonas/química , Espécies Reativas de Oxigênio/metabolismo
18.
Mol Pharmacol ; 98(4): 343-349, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764096

RESUMO

For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.


Assuntos
Bactérias/química , Produtos Biológicos/química , Indóis/farmacologia , Descoberta de Drogas , Humanos , Indóis/química , Ligantes , Mimetismo Molecular
19.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316498

RESUMO

The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocromo P-450 CYP1A1/genética , Hepatócitos/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sulfonamidas/farmacologia , Triptaminas/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Células Cultivadas , Reposicionamento de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Especificidade de Órgãos , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Regulação para Cima
20.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283770

RESUMO

We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Humanos , Indóis , Ligantes , Redes e Vias Metabólicas , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA