Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 63(1): 162-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776611

RESUMO

AIMS/HYPOTHESIS: Exposure to environmental pollution has been consistently linked to diabetes incidence in humans, but the potential causative mechanisms remain unclear. Given the critical role of regulated insulin secretion in maintaining glucose homeostasis, environmental chemicals that reach the endocrine pancreas and cause beta cell injury are of particular concern. We propose that cytochrome P450 (CYP) enzymes, which are involved in metabolising xenobiotics, could serve as a useful biomarker for direct exposure of islets to pollutants. Moreover, functional CYP enzymes in islets could also impact beta cell physiology. The aim of this study was to determine whether CYP1A enzymes are activated in islets following direct or systemic exposure to environmental pollutants. METHODS: Immortalised liver (HepG2) and rodent pancreatic endocrine cell lines (MIN6, ßTC-6, INS1, α-TC1, α-TC3), as well as human islets, were treated in vitro with known CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC). In addition, mice were injected with either a single high dose of TCDD or multiple low doses of TCDD in vivo, and islets were isolated 1, 7 or 14 days later. RESULTS: CYP1A enzymes were not activated in any of the immortalised beta or alpha cell lines tested. However, both 3-MC and TCDD potently induced CYP1A1 gene expression and modestly increased CYP1A1 enzyme activity in human islets after 48 h. The induction of CYP1A1 in human islets by TCDD was prevented by cotreatment with a cytokine mixture. After a systemic single high-dose TCDD injection, CYP1A1 enzyme activity was induced in mouse islets ~2-fold, ~40-fold and ~80-fold compared with controls after 1, 7 and 14 days, respectively, in vivo. Multiple low-dose TCDD exposure in vivo also caused significant upregulation of Cyp1a1 in mouse islets. Direct TCDD exposure to human and mouse islets in vitro resulted in suppressed glucose-induced insulin secretion. A single high-dose TCDD injection resulted in lower plasma insulin levels, as well as a pronounced increase in beta cell death. CONCLUSIONS/INTERPRETATION: Transient exposure to TCDD results in long-term upregulation of CYP1A1 enzyme activity in islets. This provides evidence for direct exposure of islets to lipophilic pollutants in vivo and may have implications for islet physiology.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Poluentes Ambientais/toxicidade , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dibenzodioxinas Policloradas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
2.
Bioorg Med Chem Lett ; 23(5): 1498-501, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333208

RESUMO

A series of tetrahydroisoquinolines were designed, synthesized and evaluated as the first non-natural product type of compounds with dual D(1) receptor (D(1)R) agonism and D(2) receptor (D(2)R) antagonism properties for treatment of schizophrenia. The initial SAR of the series was explored. The lead in the series, 3g, exhibited high affinity and good potency. Compound 3g displayed 95% of D(1)R occupancy (10 mg/kg, sc) and 75% of D(2)R occupancy (10 mg/kg, sc) in the striatum of male CD-1 mice. The series exhibited unique pharmacology and merit as tool compounds for target validation and future optimizations.


Assuntos
Antagonistas dos Receptores de Dopamina D2 , Receptores de Dopamina D1/agonistas , Esquizofrenia/tratamento farmacológico , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Animais , Desenho de Fármacos , Masculino , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/patologia , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química
3.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865123

RESUMO

Background: Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results: The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.

4.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528526

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Assuntos
Doença Enxerto-Hospedeiro , Insulinas , Transplante das Ilhotas Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Antígeno HLA-A2 , Leucócitos Mononucleares , Rejeição de Enxerto/prevenção & controle
5.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435956

RESUMO

Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to ß-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)]. Although AAV Ins1-INS could successfully infect and confer insulin expression to ß-cells, insulin null ß-cells had a prohormone processing defect. Secretion of abundant proinsulin transiently reversed diabetes. We reattempted therapy with AAV Ins1-Ins1, but Ins1-/-Ins2-/- ß-cells still had a processing defect of both replaced Ins1 and pro-islet amyloid polypeptide (proIAPP). In adult inducible models, ß-cells that lost insulin expression developed a processing defect that resulted in impaired proIAPP processing and elevated circulating proIAPP, and cells infected with AAV Ins1-Ins1 to rescue insulin expression secreted proinsulin. We assessed the subcellular localization of prohormone convertase 1/3 (PC1/3) and detected defective sorting of PC1/3 to glycogen-containing vacuoles and retention in the endoplasmic reticulum as a potential mechanism underlying defective processing. We provide evidence that persistent production of endogenous proinsulin within ß-cells is necessary for ß-cells to be able to properly store and process proinsulin.


Assuntos
Células Secretoras de Insulina , Proinsulina , Animais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proinsulina/genética , Proinsulina/metabolismo , Ratos
6.
Diabetes ; 70(12): 2771-2784, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34544729

RESUMO

We previously demonstrated that male, but not female, Swiss Webster mice are susceptible to diabetes, with incidence increased by early overnutrition and high-fat diet (HFD). In this study, we investigated how HFD in Swiss Webster males and females during preweaning, peripubertal, and postpubertal periods alters glucose homeostasis and diabetes susceptibility. In males, HFD throughout life resulted in the highest diabetes incidence. Notably, switching to chow postpuberty was protective against diabetes relative to switching to chow at weaning, despite the longer period of HFD exposure. Similarly, HFD throughout life in males resulted in less liver steatosis relative to mice with shorter duration of postpubertal HFD. Thus, HFD timing relative to weaning and puberty, not simply exposure length, contributes to metabolic outcomes. Females were protected from hyperglycemia regardless of length or timing of HFD. However, postpubertal HFD resulted in a high degree of hepatic steatosis and adipose fibrosis, but glucose regulation and insulin sensitivity remained unchanged. Interestingly, peri-insulitis was observed in the majority of females but was not correlated with impaired glucose regulation. Our findings reveal critical periods of HFD-induced glucose dysregulation with striking sex differences in Swiss Webster mice, highlighting the importance of careful consideration of HFD timing relative to critical developmental periods.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Animais Recém-Nascidos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Idade Gestacional , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Hipernutrição/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Fatores de Tempo
7.
JBMR Plus ; 5(9): e10530, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532615

RESUMO

Osteogenesis imperfecta (OI), is a genetic disorder of bone fragility caused by mutations in collagen I or proteins involved in collagen processing. Previous studies in mice and human OI bones have shown that excessive activation of TGF-ß signaling plays an important role in dominant and recessive OI disease progression. Inhibition of TGF-ß signaling with a murine pan-specific TGF-ß neutralizing antibody (1D11) was shown to significantly increase trabecular bone volume and long bone strength in mouse models of OI. To investigate the frequency of dosing and dose options of TGF-ß neutralizing antibody therapy, we assessed the effect of 1D11 on disease progression in a dominant OI mouse model (col1a2 gene mutation at G610C). In comparison with OI mice treated with a control antibody, we attempted to define mechanistic effects of 1D11 measured via µCT, biomechanical, dynamic histomorphometry, and serum biomarkers of bone turnover. In addition, osteoblast and osteoclast numbers in histological bone sections were assessed to better understand the mechanism of action of the 1D11 antibody in OI. Here we show that 1D11 treatment resulted in both dose and frequency dependency, increases in trabecular bone volume fraction and ultimate force in lumbar bone, and ultimate force, bending strength, yield force, and yield strength in the femur (p ≤ 0.05). Suppression of serum biomarkers of osteoblast differentiation, osteocalcin, resorption, CTx-1, and bone formation were observed after 1D11 treatment of OI mice. Immunohistochemical analysis showed dose and frequency dependent decreases in runt-related transcription factor, and increase in alkaline phosphatase in lumbar bone sections. In addition, a significant decrease in TRACP and the number of osteoclasts to bone surface area was observed with 1D11 treatment. Our results show that inhibition of the TGF-ß pathway corrects the high-turnover aspects of bone disease and improves biomechanical properties of OI mice. These results highlight the potential for a novel treatment for osteogenesis imperfecta. © 2021 Sanofi-Genzyme. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
Sci Rep ; 11(1): 18394, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526546

RESUMO

Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre-LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre- controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre- controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.


Assuntos
Glucose/metabolismo , Leptina/metabolismo , Células Mieloides/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Glicemia/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Técnicas de Silenciamento de Genes , Homeostase , Leptina/genética , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos
9.
Cell Rep Med ; 2(11): 100434, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841287

RESUMO

miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, ß-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of ß-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-ß signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how ß-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.


Assuntos
Progressão da Doença , Deleção de Genes , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Dieta Hiperlipídica , Humanos , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Especificidade de Órgãos , Ratos
10.
Sci Rep ; 10(1): 1448, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996693

RESUMO

Epidemiological studies have consistently shown an association between exposure to environmental pollutants and diabetes risk in humans. We have previously shown that direct exposure of mouse and human islets (endocrine pancreas) to the highly persistent pollutant TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) causes reduced insulin secretion ex vivo. Furthermore, a single high-dose of TCDD (200 µg/kg) suppressed both fasting and glucose-induced plasma insulin levels and promoted beta-cell apoptosis after 7 days in male mice. The current study investigated the longer-term effects of a single high-dose TCDD injection (20 µg/kg) on glucose metabolism and beta cell function in male and female C57Bl/6 mice. TCDD-exposed males displayed modest fasting hypoglycemia for ~4 weeks post-injection, reduced fasting insulin levels for up to 6 weeks, increased insulin sensitivity, decreased beta cell area, and increased delta cell area. TCDD-exposed females also had long-term suppressed basal plasma insulin levels, and abnormal insulin secretion for up to 6 weeks. Unlike males, TCDD did not impact insulin sensitivity or islet composition in females, but did cause transient glucose intolerance 4 weeks post-exposure. Our results show that a single exposure to dioxin can suppress basal insulin levels long-term in both sexes, but effects on glucose homeostasis are sex-dependent.


Assuntos
Diabetes Mellitus/epidemiologia , Poluentes Ambientais/efeitos adversos , Células Secretoras de Insulina/fisiologia , Dibenzodioxinas Policloradas/efeitos adversos , Fatores Sexuais , Animais , Diabetes Mellitus/etiologia , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Hipoglicemia , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Risco
11.
Sci Rep ; 10(1): 10518, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601405

RESUMO

In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on ß-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired ß-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient ß-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of ß-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1-/-;Ins2f/f). AAV-mediated expression of Cre in ß-cells provides an effective alternative to transgenic approaches for inducible knockout studies.


Assuntos
Dependovirus , Células Secretoras de Insulina/metabolismo , Insulina/genética , Regiões Promotoras Genéticas , Recombinação Genética , Animais , Insulina/metabolismo , Integrases , Camundongos , Camundongos Transgênicos
12.
J Psychoactive Drugs ; 51(2): 189-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917760

RESUMO

Currently, ketamine is the only legal psychedelic medicine available to mental health providers for the treatment of emotional suffering. Over the past several years, ketamine has come into psychiatric use as an intervention for treatment resistant depression (TRD), administered intravenously without a psychotherapeutic component. In these settings, ketamine's psychedelic effects are viewed as undesirable "side effects." In contrast, we believe ketamine can benefit patients with a wide variety of diagnoses when administered with psychotherapy and using its psychedelic properties without need for intravenous (IV) access. Its proven safety over decades of use makes it ideal for office and supervised at-home use. The unique experience that ketamine facilitates with its biological, experiential, and psychological impacts has been tailored to optimize office-based treatment evolving into a method that we call Ketamine Assisted Psychotherapy (KAP). This article is the first to explore KAP within an analytical framework examining three distinct practices that use similar methods. Here, we present demographic and outcome data from 235 patients. Our findings suggest that KAP is an effective method for decreasing depression and anxiety in a private practice setting, especially for older patients and those with severe symptom burden.


Assuntos
Alucinógenos/administração & dosagem , Ketamina/administração & dosagem , Psicoterapia/métodos , Adulto , Ansiedade/terapia , Terapia Combinada , Depressão/terapia , Feminino , Humanos , Masculino , Estudos Retrospectivos
13.
Sci Rep ; 9(1): 3307, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824713

RESUMO

The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental , Técnicas de Silenciamento de Genes , Receptores para Leptina , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Camundongos , Camundongos Transgênicos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
14.
Endocrinology ; 159(4): 1827-1841, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420708

RESUMO

Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive ß cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic ß cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.


Assuntos
Peptídeo C/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Glucose/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células Secretoras de Insulina/citologia , Caracteres Sexuais , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos
15.
Diabetes ; 65(5): 1297-309, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26740603

RESUMO

Pancreatic progenitors derived from human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating diabetes and are currently being tested in clinical trials. Yet, how the milieu of pancreatic progenitor cells, including exposure to different factors after transplant, may influence their maturation remains unclear. Here, we examined the effect of thyroid dysregulation on the development of hESC-derived progenitor cells in vivo. Hypothyroidism was generated in SCID-beige mice using an iodine-deficient diet containing 0.15% propyl-2-thiouracil, and hyperthyroidism was generated by addition of L-thyroxine (T4) to drinking water. All mice received macroencapsulated hESC-derived progenitor cells, and thyroid dysfunction was maintained for the duration of the study ("chronic") or for 4 weeks posttransplant ("acute"). Acute hyperthyroidism did not affect graft function, but acute hypothyroidism transiently impaired human C-peptide secretion at 16 weeks posttransplant. Chronic hypothyroidism resulted in severely blunted basal human C-peptide secretion, impaired glucose-stimulated insulin secretion, and elevated plasma glucagon levels. Grafts from chronic hypothyroid mice contained fewer ß-cells, heterogenous MAFA expression, and increased glucagon(+) and ghrelin(+) cells compared to grafts from euthyroid mice. Taken together, these data suggest that long-term thyroid hormone deficiency may drive the differentiation of human pancreatic progenitor cells toward α- and ε-cell lineages at the expense of ß-cell formation.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/cirurgia , Modelos Animais de Doenças , Xenoenxertos/patologia , Células-Tronco Embrionárias Humanas/transplante , Hipotireoidismo/complicações , Células Secretoras de Insulina/transplante , Animais , Antitireóideos/intoxicação , Biomarcadores/sangue , Biomarcadores/metabolismo , Linhagem Celular , Células Imobilizadas/citologia , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Xenoenxertos/citologia , Xenoenxertos/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/complicações , Hipotireoidismo/etiologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Iodo/deficiência , Masculino , Camundongos SCID , Propiltiouracila/intoxicação , Distribuição Aleatória , Tiroxina/intoxicação , Transplante Heterólogo , Transplante Heterotópico
16.
Cell Metab ; 23(1): 179-93, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26626461

RESUMO

Pancreatic ß cells are mostly post-mitotic, but it is unclear what locks them in this state. Perturbations including uncontrolled hyperglycemia can drive ß cells into more pliable states with reduced cellular insulin levels, increased ß cell proliferation, and hormone mis-expression, but it is unknown whether reduced insulin production itself plays a role. Here, we define the effects of ∼50% reduced insulin production in Ins1(-/-):Ins2(f/f):Pdx1Cre(ERT):mTmG mice prior to robust hyperglycemia. Transcriptome, proteome, and network analysis revealed alleviation of chronic endoplasmic reticulum (ER) stress, indicated by reduced Ddit3, Trib3, and Atf4 expression; reduced Xbp1 splicing; and reduced phospho-eIF2α. This state was associated with hyper-phosphorylation of Akt, which is negatively regulated by Trib3, and with cyclinD1 upregulation. Remarkably, ß cell proliferation was increased 2-fold after reduced insulin production independently of hyperglycemia. Eventually, recombined cells mis-expressed glucagon in the hyperglycemic state. We conclude that the normally high rate of insulin production suppresses ß cell proliferation in a cell-autonomous manner.


Assuntos
Proliferação de Células , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/fisiologia , Insulina/biossíntese , Animais , Células Cultivadas , Metaboloma , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mapas de Interação de Proteínas , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma
17.
Cell Rep ; 13(8): 1521-7, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26586424

RESUMO

Fibroblast growth factor 21 (FGF21)-mediated weight loss and improvements in glucose metabolism correlate with increased uncoupling protein 1 (Ucp1) levels in adipose tissues, suggesting that UCP1-dependent thermogenesis may drive FGF21 action. It was reported that FGF21 is equally effective at reducing body weight and improving glucose homeostasis without UCP1. We find while FGF21 can lower body weight in both wild-type and Ucp1 knockout mice, rapid clearance of glucose by FGF21 is defective in the absence of UCP1. Furthermore, in obese wild-type mice there is a fall in brown adipose tissue (BAT) temperature during glucose excursion, and FGF21 improves glucose clearance while preventing the fall in BAT temperature. In Ucp1 knockout mice, the fall in BAT temperature during glucose excursion and FGF21-mediated changes in BAT temperature are lost. We conclude FGF21-mediated improvements in clearance of a glucose challenge require UCP1 and evoke UCP1-dependent thermogenesis as a method to increase glucose disposal.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1
18.
Stem Cell Reports ; 4(4): 605-20, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25801507

RESUMO

Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 2/etiologia , Dieta/efeitos adversos , Células-Tronco Embrionárias Humanas/citologia , Hipoglicemiantes/farmacologia , Obesidade/etiologia , Pâncreas/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Fígado/anatomia & histologia , Fígado/metabolismo , Camundongos , Camundongos SCID , Obesidade/metabolismo , Obesidade/terapia , Tamanho do Órgão , Fenótipo
19.
Nat Biotechnol ; 32(11): 1121-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211370

RESUMO

Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/terapia , Insulina/metabolismo , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular , Diabetes Mellitus/patologia , Células-Tronco Embrionárias/transplante , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/transplante , Camundongos , Pâncreas/metabolismo , Pâncreas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA