Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Immunity ; 50(2): 378-389.e5, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784579

RESUMO

Currently, we lack an understanding of the individual and combinatorial roles for chemokine receptors in the inflammatory process. We report studies on mice with a compound deletion of Ccr1, Ccr2, Ccr3, and Ccr5, which together control monocytic and eosinophilic recruitment to resting and inflamed sites. Analysis of resting tissues from these mice, and mice deficient in each individual receptor, provides clear evidence for redundant use of these receptors in establishing tissue-resident monocytic cell populations. In contrast, analysis of cellular recruitment to inflamed sites provides evidence of specificity of receptor use for distinct leukocyte subtypes and no indication of comprehensive redundancy. We find no evidence of involvement of any of these receptors in the recruitment of neutrophils or lymphocytes to resting or acutely inflamed tissues. Our data shed important light on combinatorial inflammatory chemokine receptor function and highlight Ccr2 as the primary driver of myelomonocytic cell recruitment in acutely inflamed contexts.


Assuntos
Eosinófilos/imunologia , Inflamação/imunologia , Monócitos/imunologia , Receptores CCR/imunologia , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Eosinófilos/metabolismo , Perfilação da Expressão Gênica/métodos , Inflamação/genética , Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores CCR1/imunologia , Receptores CCR1/metabolismo , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Receptores CCR3/imunologia , Receptores CCR3/metabolismo , Receptores CCR5/imunologia , Receptores CCR5/metabolismo
2.
Osteoarthritis Cartilage ; 31(10): 1353-1364, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257556

RESUMO

OBJECTIVE: To investigate the role of endogenous TSG-6 in human osteoarthritis (OA) and assess the disease-modifying potential of a TSG-6-based biological treatment in cell, explant and animal models of OA. DESIGN: Knee articular cartilages from OA patients were analyzed for TSG-6 protein and mRNA expression using immunohistochemistry and RNAscope, respectively. The inhibitory activities of TSG-6 and its isolated Link module (Link_TSG6) on cytokine-induced degradation of OA cartilage explants were compared. Human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures were used to determine the effects of Link_TSG6 and full-length TSG-6 on IL-1α-, IL-1ß-, or TNF-stimulated ADAMTS4, ADAMTS5, and MMP13 mRNA expression. Link_TSG6 was administered i.a. to the rat ACLTpMMx model; cartilage damage and tactile allodynia were assessed. RESULTS: TSG-6 is predominantly associated with chondrocytes in regions of cartilage damage where high TSG-6 expression aligns with low MMP13, the major collagenase implicated in OA progression. Link_TSG6 is more potent than full-length TSG-6 at inhibiting cytokine-mediated matrix breakdown in human OA cartilage explants;>50% of donor cartilages, from 59 tested, were responsive to Link_TSG6 treatment. Link_TSG6 also displayed more potent effects in 3D pellet cultures, suppressing ADAMTS4, ADAMTS5, and MMP13 gene expression, which was consistent with reduced aggrecanase and collagenase activities in explant cultures. Link_TSG6 treatment reduced touch-evoked pain behavior and dose-dependently inhibited cartilage damage in a rodent model of surgically-induced OA. CONCLUSIONS: Link_TSG6 has enhanced chondroprotective activity compared to the full-length TSG-6 protein and shows potential as a disease modifying OA drug via its inhibition of aggrecanase and collagenase activity.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA Mensageiro/metabolismo
3.
Glia ; 70(6): 1068-1083, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150591

RESUMO

Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume-regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A-knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12-dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Tamanho Celular , Transporte de Íons , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo
4.
Immunol Cell Biol ; 100(6): 387-389, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466477

RESUMO

In a recent article published in Immunology & Cell Biology, Dalit et al. describe how correcting mutations in the C57BL/6 mouse strain can restore production of the chemokine CXCL11, although surprisingly, this expression of CXCL11 had little effect on B and T cells and the innate immune response to infection with lymphocytic choriomeningitis virus or influenza virus.


Assuntos
Quimiocina CXCL11 , Quimiocinas , Imunidade Inata , Animais , Infecções por Arenaviridae/imunologia , Linfócitos B/imunologia , Quimiocina CXCL11/genética , Ligantes , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR3 , Linfócitos T/imunologia
5.
Int J Exp Pathol ; 103(2): 34-43, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076142

RESUMO

Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.


Assuntos
Matriz Extracelular , Proteoglicanas , Matriz Extracelular/metabolismo , Glicosaminoglicanos , Proteoglicanas/metabolismo
6.
Immunology ; 160(4): 336-344, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32285441

RESUMO

Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine-glycosaminoglycan interactions.


Assuntos
Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Inflamação/imunologia , Leucócitos/imunologia , Receptores de Quimiocinas/metabolismo , Animais , Movimento Celular , Quimiotaxia/imunologia , Humanos , Especificidade de Órgãos
7.
J Biol Chem ; 291(24): 12627-12640, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27044744

RESUMO

TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1-85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo.


Assuntos
Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Glicosaminoglicanos/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Moléculas de Adesão Celular/genética , Linhagem Celular , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Heparina/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Ressonância de Plasmônio de Superfície
8.
Biochemistry ; 55(8): 1214-25, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836755

RESUMO

Known for its distinct metamorphic behavior, XCL1 interconverts between a canonical chemokine folded monomer (XCL1mon) that interacts with the receptor, XCR1, and a unique dimer (XCL1dim) that interacts with glycosaminoglycans and inhibits HIV-1 activity. This study presents the first detailed analysis of the GAG binding properties of XCL1dim. Basic residues within a conformationally selective dimeric variant of XCL1 (W55D) were mutated and analyzed for their effects on heparin binding. Mutation of Arg23 and Arg43 greatly diminished the level of heparin binding in both heparin Sepharose chromatography and surface plasmon resonance assays. To assess the contributions of different GAG structures to XCL1 binding, we developed a solution fluorescence polarization assay and correlated affinity with the length and level of sulfation of heparan sulfate oligosaccharides. It was recently demonstrated that the XCL1 GAG binding form, XCL1dim, is responsible for preventing HIV-1 infection through interactions with gp120. This study defines a GAG binding surface on XCL1dim that includes residues that are important for HIV-1 inhibition.


Assuntos
Quimiocinas C/química , Quimiocinas C/metabolismo , Glicosaminoglicanos/metabolismo , Sítios de Ligação , Quimiocinas C/genética , Glicosaminoglicanos/química , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/metabolismo , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica
9.
Glycobiology ; 26(3): 312-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582609

RESUMO

Both chemokine oligomerization and binding to glycosaminoglycans (GAGs) are required for their function in cell recruitment. Interactions with GAGs facilitate the formation of chemokine gradients, which provide directional cues for migrating cells. In contrast, chemokine oligomerization is thought to contribute to the affinity of GAG interactions by providing a more extensive binding surface than single subunits alone. However, the importance of chemokine oligomerization to GAG binding has not been extensively quantified. Additionally, the ability of chemokines to form different oligomers has been suggested to impart specificity to GAG interactions, but most studies have been limited to heparin. In this study, several differentially oligomerizing chemokines (CCL2, CCL3, CCL5, CCL7, CXCL4, CXCL8, CXCL11 and CXCL12) and select oligomerization-deficient mutants were systematically characterized by surface plasmon resonance to determine their relative affinities for heparin, heparan sulfate (HS) and chondroitin sulfate-A (CS-A). Wild-type chemokines demonstrated a hierarchy of binding affinities for heparin and HS that was markedly dependent on oligomerization. These results were corroborated by their relative propensity to accumulate on cells and the critical role of oligomerization in cell presentation. CS-A was found to exhibit greater chemokine selectivity than heparin or HS, as it only bound a subset of chemokines; moreover, binding to CS-A was ablated with oligomerization-deficient mutants. Overall, this study definitively demonstrates the importance of oligomerization for chemokine-GAG interactions, and demonstrates diversity in the affinity and specificity of different chemokines for GAGs. These data support the idea that GAG interactions provide a mechanism for fine-tuning chemokine function.


Assuntos
Movimento Celular , Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Sítios de Ligação , Quimiocinas/química , Glicosaminoglicanos/química , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
10.
J Immunol ; 192(5): 2177-85, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501198

RESUMO

TNF-stimulated gene/protein-6 (TSG-6) is expressed by many different cell types in response to proinflammatory cytokines and plays an important role in the protection of tissues from the damaging consequences of acute inflammation. Recently, TSG-6 was identified as being largely responsible for the beneficial effects of multipotent mesenchymal stem cells, for example in the treatment of animal models of myocardial infarction and corneal injury/allogenic transplant. The protective effect of TSG-6 is due in part to its inhibition of neutrophil migration, but the mechanisms underlying this activity remain unknown. In this study, we have shown that TSG-6 inhibits chemokine-stimulated transendothelial migration of neutrophils via a direct interaction (KD, ∼ 25 nM) between TSG-6 and the glycosaminoglycan binding site of CXCL8, which antagonizes the association of CXCL8 with heparin. Furthermore, we found that TSG-6 impairs the binding of CXCL8 to cell surface glycosaminoglycans and the transport of CXCL8 across an endothelial cell monolayer. In vivo this could limit the formation of haptotactic gradients on endothelial heparan sulfate proteoglycans and, hence, integrin-mediated tight adhesion and migration. We further observed that TSG-6 suppresses CXCL8-mediated chemotaxis of neutrophils; this lower potency effect might be important at sites where there is high local expression of TSG-6. Thus, we have identified TSG-6 as a CXCL8-binding protein, making it, to our knowledge, the first soluble mammalian chemokine-binding protein to be described to date. We have also revealed a potential mechanism whereby TSG-6 mediates its anti-inflammatory and protective effects. This could inform the development of new treatments for inflammation in the context of disease or following transplantation.


Assuntos
Moléculas de Adesão Celular/imunologia , Movimento Celular/fisiologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Aloenxertos , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Adesão Celular/fisiologia , Células HL-60 , Heparina , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Neutrófilos/citologia , Transplante de Células-Tronco
11.
J Biol Chem ; 289(21): 14896-912, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24727473

RESUMO

The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Epitopos/metabolismo , Glicosaminoglicanos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Quimiocina CCL2/química , Quimiocina CCL2/genética , Quimiocina CCL7/química , Quimiocina CCL7/genética , Eletroforese em Gel de Poliacrilamida , Epitopos/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
12.
J Biol Chem ; 289(46): 31846-31855, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266725

RESUMO

To elucidate the ligand-binding surface of the CC chemokine-binding proteins Evasin-1 and Evasin-4, produced by the tick Rhipicephalus sanguineus, we sought to identify the key determinants responsible for their different chemokine selectivities by expressing Evasin mutants using phage display. We first designed alanine mutants based on the Evasin-1·CCL3 complex structure and an in silico model of Evasin-4 bound to CCL3. The mutants were displayed on M13 phage particles, and binding to chemokine was assessed by ELISA. Selected variants were then produced as purified proteins and characterized by surface plasmon resonance analysis and inhibition of chemotaxis. The method was validated by confirming the importance of Phe-14 and Trp-89 to the inhibitory properties of Evasin-1 and led to the identification of a third crucial residue, Asn-88. Two amino acids, Glu-16 and Tyr-19, were identified as key residues for binding and inhibition of Evasin-4. In a parallel approach, we identified one clone (Y28Q/N60D) that showed a clear reduction in binding to CCL3, CCL5, and CCL8. It therefore appears that Evasin-1 and -4 use different pharmacophores to bind CC chemokines, with the principal binding occurring through the C terminus of Evasin-1, but through the N-terminal region of Evasin-4. However, both proteins appear to target chemokine N termini, presumably because these domains are key to receptor signaling. The results also suggest that phage display may offer a useful approach for rapid investigation of the pharmacophores of small inhibitory binding proteins.


Assuntos
Quimiocinas CC/química , Receptores de Quimiocinas/química , Alanina/química , Sequência de Aminoácidos , Animais , Movimento Celular , Quimiocina CCL3/química , Quimiocina CCL5/química , Quimiocina CCL5/genética , Quimiocina CCL8/química , Quimiotaxia , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Glicosilação , Células HEK293 , Humanos , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , Rhipicephalus sanguineus , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
13.
J Biol Chem ; 289(9): 5619-34, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403066

RESUMO

Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.


Assuntos
Moléculas de Adesão Celular/química , Ácido Hialurônico/química , Modelos Moleculares , Oligossacarídeos/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ovulação/genética , Ovulação/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
14.
J Am Soc Mass Spectrom ; 35(7): 1550-1555, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38836362

RESUMO

Heparin, a widely used clinical anticoagulant, is generally well-tolerated; however, approximately 1% of patients develop heparin-induced thrombocytopenia (HIT), a serious side effect. While efforts to understand the role of chemokines in HIT development are ongoing, certain aspects remain less studied, such as the stabilization of chemokine oligomers by heparin. Here, we conducted a combined ion mobility-native mass spectrometry study to investigate the stability of chemokine oligomers and their complexes with fondaparinux, a synthetic heparin analog. Collision-induced dissociation and unfolding experiments provided clarity on the specificity and relevance of chemokine oligomers and their fondaparinux complexes with varying stoichiometries, as well as the stabilizing effects of fondaparinux binding.


Assuntos
Anticoagulantes , Fondaparinux , Polissacarídeos , Fondaparinux/química , Fondaparinux/farmacologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Anticoagulantes/química , Anticoagulantes/farmacologia , Quimiocinas/química , Quimiocinas/metabolismo , Humanos , Heparina/química , Heparina/metabolismo , Ligação Proteica , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos
15.
Science ; 379(6633): eabp8964, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795835

RESUMO

For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Sistema Imunitário , Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/metabolismo , Sistema Imunitário/citologia , Humanos , Animais
16.
Sci Signal ; 16(810): eadf2537, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934811

RESUMO

Chemokine-driven leukocyte recruitment is a key component of the immune response and of various diseases. Therapeutically targeting the chemokine system in inflammatory disease has been unsuccessful, which has been attributed to redundancy. We investigated why chemokines instead have specific, specialized functions, as demonstrated by multiple studies. We analyzed the expression of genes encoding chemokines and their receptors across species, tissues, and diseases. This analysis revealed complex expression patterns such that genes encoding multiple chemokines that mediated recruitment of the same leukocyte type were expressed in the same context, such as the genes encoding the CXCR3 ligands CXCL9, CXCL10, and CXCL11. Through biophysical approaches, we showed that these chemokines differentially interacted with extracellular matrix glycosaminoglycans (ECM GAGs), which was enhanced by sulfation of specific GAGs. Last, in vivo approaches demonstrated that GAG binding was critical for the CXCL9-dependent recruitment of specific T cell subsets but not of others, irrespective of CXCR3 expression. Our data demonstrate that interactions with ECM GAGs regulated whether chemokines were presented on cell surfaces or remained more soluble, thereby affecting chemokine availability and ensuring specificity of chemokine action. Our findings provide a mechanistic understanding of chemokine-mediated immune cell recruitment and identify strategies to target specific chemokines during inflammatory disease.


Assuntos
Quimiocina CXCL10 , Proteoglicanas , Humanos , Quimiocinas/genética , Leucócitos , Matriz Extracelular/genética , Inflamação/genética
17.
Cell Rep ; 42(1): 111930, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640356

RESUMO

Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.


Assuntos
Fator Plaquetário 4 , Proteoglicanas , Fator Plaquetário 4/metabolismo , Receptores de Quimiocinas , Quimiocinas/metabolismo , Glicosaminoglicanos , Matriz Extracelular/metabolismo
18.
Neurosurgery ; 92(3): 581-589, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729787

RESUMO

BACKGROUND: There is evidence that macrophage infiltration in the tumor microenvironment promotes vestibular schwannoma (VS) growth. Efficacy of bevacizumab in NF2-associated VS demonstrates the value of therapies targeting the microvascular tumor microenvironment, and tumor-associated macrophages (TAMs) may represent another druggable target. OBJECTIVE: To characterize the relationship between growth, TAM infiltration, and circulating monocyte chemokines in a large cohort of patients with VS. METHODS: Immunostaining for Iba1 (macrophages), CD31 (endothelium), and fibrinogen (permeability) was performed on 101 growing and 19 static sporadic VS. The concentrations of monocyte-specific chemokines were measured in the plasma of 50 patients with growing VS and 25 patients with static VS. RESULTS: The Iba1 + cell count was significantly higher in growing as compared with static VS (592 vs 226/×20 HPF, P =<0.001). Similarly, the CD31 + % surface area was higher in growing VS (2.19% vs 1.32%, P = .01). There was a positive correlation between TAM infiltration and VS growth rate, which persisted after controlling for the effect of tumor volume (aR2 = 0.263, P =<0.001). The plasma concentrations of several monocytic chemokines were higher in patients with growing rather than static VS. CONCLUSION: There is a strong positive correlation between TAM infiltration and volumetric growth of VS, and this relationship is independent of tumor size. There is a colinear relationship between TAM infiltration and tumor vascularity, implying that inflammation and angiogenesis are interlinked in VS. Chemokines known to induce monocyte chemotaxis are found in higher concentrations in patients with growing VS, suggestive of a potential pathophysiological mechanism.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/patologia , Quimiocinas/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microambiente Tumoral
19.
Nat Rev Immunol ; 22(2): 124-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34211187

RESUMO

Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-ß (TGFß). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Imunidade , Imunomodulação , Imunoterapia
20.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699420

RESUMO

Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally distinct fluorescent reporters mark expression of CCRs 1, 2, 3, and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.


Assuntos
Quimiocinas , Inflamação , Animais , Proteínas de Transporte , Quimiocinas/genética , Quimiocinas/metabolismo , Expressão Gênica , Inflamação/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA