Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 59(6): 713-722, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084659

RESUMO

Human rhinovirus (RV) infections are a significant risk factor for exacerbations of asthma and chronic obstructive pulmonary disease. Thus, approaches to prevent RV infection in such patients would give significant benefit. Through RNA interference library screening, we identified lanosterol synthase (LSS), a component of the cholesterol biosynthetic pathway, as a novel regulator of RV replication in primary normal human bronchial epithelial cells. Selective knock down of LSS mRNA with short interfering RNA inhibited RV2 replication in normal human bronchial epithelial cells. Small molecule inhibitors of LSS mimicked the effect of LSS mRNA knockdown in a concentration-dependent manner. We further demonstrated that the antiviral effect is not dependent on a reduction in total cellular cholesterol but requires a 24-hour preincubation with the LSS inhibitor. The rank order of antiviral potency of the LSS inhibitors used was consistent with LSS inhibition potency; however, all compounds showed remarkably higher potency against RV compared with the LSS enzyme potency. We showed that LSS inhibition led to an induction of 24(S),25 epoxycholesterol, an important regulator of the sterol pathway. We also demonstrated that LSS inhibition led to a profound increase in expression of the innate antiviral defense protein, IFN-ß. We found LSS to be a novel regulator of RV replication and innate antiviral immunity and identified a potential molecular mechanism for this effect, via induction of 24(S),25 epoxycholesterol. Inhibition of LSS could therefore be a novel therapeutic target for prevention of RV-induced exacerbations.


Assuntos
Antivirais/farmacologia , Brônquios/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Transferases Intramoleculares/metabolismo , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Replicação Viral/imunologia , Brônquios/efeitos dos fármacos , Brônquios/virologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/virologia , RNA Interferente Pequeno/genética , Rhinovirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
2.
Talanta ; 65(2): 331-6, 2005 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18969803

RESUMO

In this paper, a novel strategy for multicomponent analysis of two classes of pesticides such as triazines (atrazine and simazine) and phenoxyalkanoic acids (2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chlorophenoxyacetic acid (CPOAc), phenoxyacetic acid (POAc)) employing immuno-arrays is demonstrated. The approach is based on cross-reactive arrays of specific antibody pairs coupled to chemometric pattern recognition. The monoclonal antibody pairs employed in this work (atrazine-simazine and 2,4-D) are specific towards a set of analytes and preclude a particular set of others present in the sample matrix. Antibody pairs of atrazine, simazine, and 2,4-D are used to discriminate and quantify analyte of interest. Atrazine was quantified in presence of trace concentration of simazine and that of 2,4-D. The combinatorial cross-reactivity of antibody pairs towards simazine, atrazine and 2,4-D is used to distinguish among different classes of analytes and their influence on the signal suppression in immuno-techniques. These sensors exclude recognition by carbamates such as carbaryl and carbofuran.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA