Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(21): 3566-3577, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33242073

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.


Assuntos
Desmetilação , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/patologia , Proteína 2 Homóloga a MutS/antagonistas & inibidores , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Expansão das Repetições de Trinucleotídeos , Sistemas CRISPR-Cas , Metilação de DNA , Reparo do DNA , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Distrofia Miotônica/genética
2.
PLoS Biol ; 17(10): e3000081, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634368

RESUMO

In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Linhagem da Célula/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Proteína Nodal/genética , Células-Tronco Pluripotentes/efeitos dos fármacos , Fenômenos Biomecânicos , Padronização Corporal/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/genética , Gastrulação/efeitos dos fármacos , Gastrulação/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Ensaios de Triagem em Larga Escala , Humanos , Modelos Biológicos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Propriedades de Superfície
3.
Elife ; 112022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959725

RESUMO

Production of large quantities of hepatocytes remains a major challenge for a number of clinical applications in the biomedical field. Directed differentiation of human pluripotent stem cells (hPSCs) into hepatocyte-like cells (HLCs) provides an advantageous solution and a number of protocols have been developed for this purpose. However, these methods usually follow different steps of liver development in vitro, which is time consuming and requires complex culture conditions. In addition, HLCs lack the full repertoire of functionalities characterising primary hepatocytes. Here, we explore the interest of forward programming to generate hepatocytes from hPSCs and to bypass these limitations. This approach relies on the overexpression of three hepatocyte nuclear factors (HNF1A, HNF6, and FOXA3) in combination with different nuclear receptors expressed in the adult liver using the OPTi-OX platform. Forward programming allows for the rapid production of hepatocytes (FoP-Heps) with functional characteristics using a simplified process. We also uncovered that the overexpression of nuclear receptors such as RORc can enhance specific functionalities of FoP-Heps thereby validating its role in lipid/glucose metabolism. Together, our results show that forward programming could offer a versatile alternative to direct differentiation for generating hepatocytes in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Sci Rep ; 11(1): 6137, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731744

RESUMO

Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE.


Assuntos
Endoderma , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Via de Sinalização Wnt , Diferenciação Celular , Linhagem Celular , Endoderma/citologia , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos
5.
Sci Rep ; 9(1): 14844, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619727

RESUMO

Human pluripotent stem cells (hPSCs) have significant levels of low-grade genetic mosaicism, which commonly used techniques fail to detect in bulk DNA. These copy number variations remain a hurdle for the clinical translation of hPSC, as their effect in vivo ranges from unknown to dangerous, and the ability to detect them will be necessary as the field advances. As such there is need for techniques which can efficiently analyse genetic content in single cells with higher throughput and lower costs. We report here on the use of the Fluidigm C1 single cell WGA platform in combination with shallow whole genome sequencing to analyse the genetic content of single hPSCs. From a hPSC line carrying an isochromosome 20, 56 single cells were analysed and found to carry a total of 50 aberrations, across 23% of cells, which could not be detected by bulk analysis. Aberrations were predominantly segmental gains, with a fewer number of segmental losses and aneuploidies. Interestingly, 40% of the breakpoints seen here correspond to known DNA fragile sites. Our results therefore demonstrate the feasibility of single cell shallow sequencing of hPSC and further expand upon the biological importance and frequency of single cell mosaicism in hPSC.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Embrionárias Humanas , Mosaicismo , Análise de Célula Única , Linhagem Celular , Humanos
6.
Hum Reprod Update ; 24(2): 162-175, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377992

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE: Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS: Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES: Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS: As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.

7.
Stem Cell Reports ; 11(1): 102-114, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29910126

RESUMO

In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.


Assuntos
Diferenciação Celular/genética , Evolução Clonal/genética , DNA Mitocondrial , Mutagênese , Células-Tronco Pluripotentes/metabolismo , Alelos , Técnicas de Cultura de Células , Aberrações Cromossômicas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Heterogeneidade Genética , Variação Genética , Instabilidade Genômica , Genótipo , Humanos , Mosaicismo
8.
Stem Cell Rev Rep ; 12(6): 721-730, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27544201

RESUMO

When aiming for homogenous embryoid body (EB) differentiation, the use of equal-sized EBs is required to avoid a size-induced differentiation bias. In this study we developed an efficient and standardized EB formation protocol for human pluripotent stem cells (hPSC) cultured in a laminin-521-based xeno-free system. As the cell proliferation rate of the cells growing on laminin-521 strongly affected the efficiency of aggregate formation, we found that recently passaged cells, as well as the addition of ROCK inhibitor, were essential for reproducible EB formation from hPSC single-cell suspensions. EBs could be obtained in a variety of differentiation media, in 96-well round-bottom plates and in hanging drops. Gene expression studies on differentially sized EBs from three individual human embryonic stem cell lines demonstrated that the medium used for differentiation influenced the differentiation outcome to a much greater extent than the number of cells used for the initial EB formation. Our findings give a new insight into factors that influence the EB formation and differentiation process. This optimized method allows us to easily manipulate EB formation and provide an excellent starting point for downstream EB-based differentiation protocols.


Assuntos
Proliferação de Células/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Laminina/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA