Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2308668121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551836

RESUMO

We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables (CVs) in materials and molecules. In this scheme, the parameters are learned from atomistic simulations based on ab initio quantum mechanical models. Force field, memory kernel, and noise generator are constructed in the context of the Mori-Zwanzig formalism, under the constraint of the fluctuation-dissipation theorem. Combined with deep potential molecular dynamics and electronic density functional theory, this approach opens the way to multiscale modeling in a variety of situations. Here, we demonstrate this capability with a study of two mesoscale processes in crystalline lead titanate, namely the field-driven dynamics of a planar ferroelectric domain wall, and the dynamics of an extensive lattice of coarse-grained electric dipoles. In the first case, AIGLE extends the reach of ab initio simulations to a regime of noise-driven motions not accessible to molecular dynamics. In the second case, AIGLE deals with an extensive set of CVs by adopting a local approximation for the memory kernel and retaining only short-range noise correlations. The scheme is computationally more efficient than molecular dynamics by several orders of magnitude and mimics the microscopic dynamics at low frequencies where it reproduces accurately the dominant far-infrared absorption frequency.

2.
Angew Chem Int Ed Engl ; 63(27): e202405379, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639181

RESUMO

Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.

3.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526163

RESUMO

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.

4.
J Chem Phys ; 156(12): 124107, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364869

RESUMO

Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make molecular simulations with the accuracy of quantum mechanical density functional theory possible at a cost only moderately higher than that of empirical force fields. However, the majority of these models lack explicit long-range interactions and fail to describe properties that derive from the Coulombic tail of the forces. To overcome this limitation, we extend the DP model by approximating the long-range electrostatic interaction between ions (nuclei + core electrons) and valence electrons with that of distributions of spherical Gaussian charges located at ionic and electronic sites. The latter are rigorously defined in terms of the centers of the maximally localized Wannier distributions, whose dependence on the local atomic environment is modeled accurately by a deep neural network. In the DP long-range (DPLR) model, the electrostatic energy of the Gaussian charge system is added to short-range interactions that are represented as in the standard DP model. The resulting potential energy surface is smooth and possesses analytical forces and virial. Missing effects in the standard DP scheme are recovered, improving on accuracy and predictive power. By including long-range electrostatics, DPLR correctly extrapolates to large systems the potential energy surface learned from quantum mechanical calculations on smaller systems. We illustrate the approach with three examples: the potential energy profile of the water dimer, the free energy of interaction of a water molecule with a liquid water slab, and the phonon dispersion curves of the NaCl crystal.

5.
Proc Natl Acad Sci U S A ; 116(44): 21983-21991, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619568

RESUMO

A framework is introduced for constructing interpretable and truly reliable reduced models for multiscale problems in situations without scale separation. Hydrodynamic approximation to the kinetic equation is used as an example to illustrate the main steps and issues involved. To this end, a set of generalized moments are constructed first to optimally represent the underlying velocity distribution. The well-known closure problem is then solved with the aim of best capturing the associated dynamics of the kinetic equation. The issue of physical constraints such as Galilean invariance is addressed and an active-learning procedure is introduced to help ensure that the dataset used is representative enough. The reduced system takes the form of a conventional moment system and works regardless of the numerical discretization used. Numerical results are presented for the BGK (Bhatnagar-Gross-Krook) model and binary collision of Maxwell molecules. We demonstrate that the reduced model achieves a uniform accuracy in a wide range of Knudsen numbers spanning from the hydrodynamic limit to free molecular flow.

6.
Phys Rev Lett ; 126(23): 236001, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170175

RESUMO

Using the Deep Potential methodology, we construct a model that reproduces accurately the potential energy surface of the SCAN approximation of density functional theory for water, from low temperature and pressure to about 2400 K and 50 GPa, excluding the vapor stability region. The computational efficiency of the model makes it possible to predict its phase diagram using molecular dynamics. Satisfactory overall agreement with experimental results is obtained. The fluid phases, molecular and ionic, and all the stable ice polymorphs, ordered and disordered, are predicted correctly, with the exception of ice III and XV that are stable in experiments, but metastable in the model. The evolution of the atomic dynamics upon heating, as ice VII transforms first into ice VII^{''} and then into an ionic fluid, reveals that molecular dissociation and breaking of the ice rules coexist with strong covalent fluctuations, explaining why only partial ionization was inferred in experiments.

7.
J Chem Phys ; 154(9): 094703, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685134

RESUMO

Solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics could provide atomic scale information to understand the diffusion process of Li-ion in these superionic conductor materials. Here, we implement the deep potential generator to set up an efficient protocol to automatically generate interatomic potentials for Li10GeP2S12-type solid-state electrolyte materials (Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12). The reliability and accuracy of the fast interatomic potentials are validated. With the potentials, we extend the simulation of the diffusion process to a wide temperature range (300 K-1000 K) and systems with large size (∼1000 atoms). Important technical aspects such as the statistical error and size effect are carefully investigated, and benchmark tests including the effect of density functional, thermal expansion, and configurational disorder are performed. The computed data that consider these factors agree well with the experimental results, and we find that the three structures show different behaviors with respect to configurational disorder. Our work paves the way for further research on computation screening of solid-state electrolyte materials.

8.
Proc Natl Acad Sci U S A ; 115(34): 8505-8510, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082389

RESUMO

Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the "curse of dimensionality." This paper introduces a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function. Numerical results on examples including the nonlinear Black-Scholes equation, the Hamilton-Jacobi-Bellman equation, and the Allen-Cahn equation suggest that the proposed algorithm is quite effective in high dimensions, in terms of both accuracy and cost. This opens up possibilities in economics, finance, operational research, and physics, by considering all participating agents, assets, resources, or particles together at the same time, instead of making ad hoc assumptions on their interrelationships.

9.
J Phys Chem A ; 124(35): 7155-7165, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786985

RESUMO

We introduce the deep post Hartree-Fock (DeePHF) method, a machine learning-based scheme for constructing accurate and transferable models for the ground-state energy of electronic structure problems. DeePHF predicts the energy difference between results of highly accurate models such as the coupled cluster method and low accuracy models such as the Hartree-Fock (HF) method, using the ground-state electronic orbitals as the input. It preserves all the symmetries of the original high accuracy model. The added computational cost is less than that of the reference HF or DFT and scales linearly with respect to system size. We examine the performance of DeePHF on organic molecular systems using publicly available data sets and obtain the state-of-art performance, particularly on large data sets.

10.
Nucleic Acids Res ; 46(11): e69, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29617928

RESUMO

The complex system of gene expression is regulated by the cell type-specific binding of transcription factors (TFs) to regulatory elements. Identifying variants that disrupt TF binding and lead to human diseases remains a great challenge. To address this, we implement sequence-based deep learning models that accurately predict the TF binding intensities to given DNA sequences. In addition to accurately classifying TF-DNA binding or unbinding, our models are capable of accurately predicting real-valued TF binding intensities by leveraging large-scale TF ChIP-seq data. The changes in the TF binding intensities between the altered sequence and the reference sequence reflect the degree of functional impact for the variant. This enables us to develop the tool DeFine (Deep learning based Functional impact of non-coding variants evaluator, http://define.cbi.pku.edu.cn) with improved performance for assessing the functional impact of non-coding variants including SNPs and indels. DeFine accurately identifies the causal functional non-coding variants from disease-associated variants in GWAS. DeFine is an effective and easy-to-use tool that facilities systematic prioritization of functional non-coding variants.


Assuntos
Biologia Computacional/métodos , DNA/metabolismo , Regulação da Expressão Gênica/genética , Redes Neurais de Computação , Elementos Reguladores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Algoritmos , Sítios de Ligação/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Humanos
11.
Phys Rev Lett ; 120(14): 143001, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694129

RESUMO

We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

12.
J Chem Phys ; 149(15): 154107, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30342462

RESUMO

An adaptive modeling method (AMM) that couples a deep neural network potential and a classical force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation community. The AMM simulated system is decomposed into three types of regions. The first type captures the important phenomena in the system and requires high accuracy, for which we use the Deep Potential Molecular Dynamics (DeePMD) model in this work. The DeePMD model is trained to accurately reproduce the statistical properties of the ab initio molecular dynamics. The second type does not require high accuracy, and a classical force field is used to describe it in an efficient way. The third type is used for a smooth transition between the first and the second types of regions. By using a force interpolation scheme and imposing a thermodynamics force in the transition region, we make the DeePMD region embedded in the AMM simulated system as if it were embedded in a system that is fully described by the accurate potential. A representative example of the liquid water system is used to show the feasibility and promise of this method.

13.
J Chem Phys ; 148(12): 124113, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604808

RESUMO

A new approach for efficiently exploring the configuration space and computing the free energy of large atomic and molecular systems is proposed, motivated by an analogy with reinforcement learning. There are two major components in this new approach. Like metadynamics, it allows for an efficient exploration of the configuration space by adding an adaptively computed biasing potential to the original dynamics. Like deep reinforcement learning, this biasing potential is trained on the fly using deep neural networks, with data collected judiciously from the exploration and an uncertainty indicator from the neural network model playing the role of the reward function. Parameterization using neural networks makes it feasible to handle cases with a large set of collective variables. This has the potential advantage that selecting precisely the right set of collective variables has now become less critical for capturing the structural transformations of the system. The method is illustrated by studying the full-atom explicit solvent models of alanine dipeptide and tripeptide, as well as the system of a polyalanine-10 molecule with 20 collective variables.


Assuntos
Peptídeos/química , Alanina/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Solventes
14.
J Chem Phys ; 149(3): 034101, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037247

RESUMO

We introduce a general framework for constructing coarse-grained potential models without ad hoc approximations such as limiting the potential to two- and/or three-body contributions. The scheme, called the Deep Coarse-Grained Potential (abbreviated DeePCG), exploits a carefully crafted neural network to construct a many-body coarse-grained potential. The network is trained with full atomistic data in a way that preserves the natural symmetries of the system. The resulting model is very accurate and can be used to sample the configurations of the coarse-grained variables in a much faster way than with the original atomistic model. As an application, we consider liquid water and use the oxygen coordinates as the coarse-grained variables, starting from a full atomistic simulation of this system at the ab initio molecular dynamics level. We find that the two-body, three-body, and higher-order oxygen correlation functions produced by the coarse-grained and full atomistic models agree very well with each other, illustrating the effectiveness of the DeePCG model on a rather challenging task.

15.
Proc Natl Acad Sci U S A ; 112(31): 9518-23, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195761

RESUMO

The stability of the plane Poiseuille flow is analyzed using a thermodynamic formalism by considering the deterministic Navier-Stokes equation with Gaussian random initial data. A unique critical Reynolds number, Rec ≈ 2,332, at which the probability of observing puffs in the solution changes from 0 to 1, is numerically demonstrated to exist in the thermodynamic limit and is found to be independent of the noise amplitude. Using the puff density as the macrostate variable, the free energy of such a system is computed and analyzed. The puff density approaches zero as the critical Reynolds number is approached from above, signaling a continuous transition despite the fact that the bifurcation is subcritical for a finite-sized system. An action function is found for the probability of observing puffs in a small subregion of the flow, and this action function depends only on the Reynolds number. The strategy used here should be applicable to a wide range of other problems exhibiting subcritical instabilities.


Assuntos
Reologia , Fricção , Cinética , Fenômenos Magnéticos , Modelos Teóricos , Fenômenos Fisiológicos da Pele , Soluções , Termodinâmica
16.
J Chem Phys ; 140(16): 164109, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24784255

RESUMO

Many problems in biology, chemistry, and materials science require knowledge of saddle points on free energy surfaces. These saddle points act as transition states and are the bottlenecks for transitions of the system between different metastable states. For simple systems in which the free energy depends on a few variables, the free energy surface can be precomputed, and saddle points can then be found using existing techniques. For complex systems, where the free energy depends on many degrees of freedom, this is not feasible. In this paper, we develop an algorithm for finding the saddle points on a high-dimensional free energy surface "on-the-fly" without requiring a priori knowledge the free energy function itself. This is done by using the general strategy of the heterogeneous multi-scale method by applying a macro-scale solver, here the gentlest ascent dynamics algorithm, with the needed force and Hessian values computed on-the-fly using a micro-scale model such as molecular dynamics. The algorithm is capable of dealing with problems involving many coarse-grained variables. The utility of the algorithm is illustrated by studying the saddle points associated with (a) the isomerization transition of the alanine dipeptide using two coarse-grained variables, specifically the Ramachandran dihedral angles, and (b) the beta-hairpin structure of the alanine decamer using 20 coarse-grained variables, specifically the full set of Ramachandran angle pairs associated with each residue. For the alanine decamer, we obtain a detailed network showing the connectivity of the minima obtained and the saddle-point structures that connect them, which provides a way to visualize the gross features of the high-dimensional surface.

17.
Proc Natl Acad Sci U S A ; 107(4): 1273-8, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080703

RESUMO

Given a complex local operator, such as the generator of a Markov chain on a large network, a differential operator, or a large sparse matrix that comes from the discretization of a differential operator, we would like to find its best finite dimensional approximation with a given dimension. The answer to this question is often given simply by the projection of the original operator to its eigensubspace of the given dimension that corresponds to the smallest or largest eigenvalues, depending on the setting. The representation of such subspaces, however, is far from being unique and our interest is to find the most localized bases for these subspaces. The reduced operator using these bases would have sparsity features similar to that of the original operator. We will discuss different ways of obtaining localized bases, and we will give an explicit characterization of the decay rate of these basis functions. We will also discuss efficient numerical algorithms for finding such basis functions and the reduced (or compressed) operator.

18.
J Chem Theory Comput ; 19(14): 4484-4493, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071815

RESUMO

We propose a quantum Monte Carlo approach to solve the many-body Schrödinger equation for the electronic ground state. The method combines optimization from variational Monte Carlo and propagation from auxiliary field quantum Monte Carlo in a way that significantly alleviates the sign problem. In application to molecular systems, we obtain highly accurate results for configurations dominated by either dynamic or static electronic correlation.

19.
Chem Sci ; 14(35): 9360-9373, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712039

RESUMO

AI has been widely applied in scientific scenarios, such as robots performing chemical synthetic actions to free researchers from monotonous experimental procedures. However, there exists a gap between human-readable natural language descriptions and machine-executable instructions, of which the former are typically in numerous chemical articles, and the latter are currently compiled manually by experts. We apply the latest technology of pre-trained models and achieve automatic transcription between descriptions and instructions. We design a concise and comprehensive schema of instructions and construct an open-source human-annotated dataset consisting of 3950 description-instruction pairs, with 9.2 operations in each instruction on average. We further propose knowledgeable pre-trained transcription models enhanced by multi-grained chemical knowledge. The performance of recent popular models and products showing great capability in automatic writing (e.g., ChatGPT) has also been explored. Experiments prove that our system improves the instruction compilation efficiency of researchers by at least 42%, and can generate fluent academic paragraphs of synthetic descriptions when given instructions, showing the great potential of pre-trained models in improving human productivity.

20.
J Chem Phys ; 136(12): 124104, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22462832

RESUMO

The dynamics of complex systems often involve thermally activated barrier crossing events that allow these systems to move from one basin of attraction on the high dimensional energy surface to another. Such events are ubiquitous, but challenging to simulate using conventional simulation tools, such as molecular dynamics. Recently, E and Zhou [Nonlinearity 24(6), 1831 (2011)] proposed a set of dynamic equations, the gentlest ascent dynamics (GAD), to describe the escape of a system from a basin of attraction and proved that solutions of GAD converge to index-1 saddle points of the underlying energy. In this paper, we extend GAD to enable finite temperature simulations in which the system hops between different saddle points on the energy surface. An effective strategy to use GAD to sample an ensemble of low barrier saddle points located in the vicinity of a locally stable configuration on the high dimensional energy surface is proposed. The utility of the method is demonstrated by studying the low barrier saddle points associated with point defect activity on a surface. This is done for two representative systems, namely, (a) a surface vacancy and ad-atom pair and (b) a heptamer island on the (111) surface of copper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA