Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
2.
Glob Chang Biol ; 26(2): 496-508, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31597216

RESUMO

As the ratio of carbon uptake to water use by vegetation, water-use efficiency (WUE) is a key ecosystem property linking global carbon and water cycles. It can be estimated in several ways, but it is currently unclear how different measures of WUE relate, and how well they each capture variation in WUE with soil moisture availability. We evaluated WUE in an Acacia-dominated woodland ecosystem of central Australia at various spatial and temporal scales using stable carbon isotope analysis, leaf gas exchange and eddy covariance (EC) fluxes. Semi-arid Australia has a highly variable rainfall pattern, making it an ideal system to study how WUE varies with water availability. We normalized our measures of WUE across a range of vapour pressure deficits using g1 , which is a parameter derived from an optimal stomatal conductance model and which is inversely related to WUE. Continuous measures of whole-ecosystem g1 obtained from EC data were elevated in the 3 days following rain, indicating a strong effect of soil evaporation. Once these values were removed, a close relationship of g1 with soil moisture content was observed. Leaf-scale values of g1 derived from gas exchange were in close agreement with ecosystem-scale values. In contrast, values of g1 obtained from stable isotopes did not vary with soil moisture availability, potentially indicating remobilization of stored carbon during dry periods. Our comprehensive comparison of alternative measures of WUE shows the importance of stomatal control of fluxes in this highly variable rainfall climate and demonstrates the ability of these different measures to quantify this effect. Our study provides the empirical evidence required to better predict the dynamic carbon-water relations in semi-arid Australian ecosystems.


Assuntos
Ecossistema , Água , Austrália , Florestas , Fotossíntese , Solo
3.
New Phytol ; 221(3): 1409-1423, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30242841

RESUMO

The ratio of leaf intercellular to ambient CO2 (χ) is modulated by stomatal conductance (gs ). These quantities link carbon (C) assimilation with transpiration, and along with photosynthetic capacities (Vcmax and Jmax ) are required to model terrestrial C uptake. We use optimization criteria based on the growth environment to generate predicted values of photosynthetic and water-use efficiency traits and test these against a unique dataset. Leaf gas-exchange parameters and carbon isotope discrimination were analysed in relation to local climate across a continental network of study sites. Sun-exposed leaves of 50 species at seven sites were measured in contrasting seasons. Values of χ predicted from growth temperature and vapour pressure deficit were closely correlated to ratios derived from C isotope (δ13 C) measurements. Correlations were stronger in the growing season. Predicted values of photosynthetic traits, including carboxylation capacity (Vcmax ), derived from δ13 C, growth temperature and solar radiation, showed meaningful agreement with inferred values derived from gas-exchange measurements. Between-site differences in water-use efficiency were, however, only weakly linked to the plant's growth environment and did not show seasonal variation. These results support the general hypothesis that many key parameters required by Earth system models are adaptive and predictable from plants' growth environments.


Assuntos
Meio Ambiente , Modelos Biológicos , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Isótopos de Carbono , Transporte de Elétrons , Modelos Lineares , Fotossíntese , Estômatos de Plantas/fisiologia , Reprodutibilidade dos Testes
4.
Nature ; 494(7437): 349-52, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334410

RESUMO

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.


Assuntos
Mudança Climática/estatística & dados numéricos , Secas/estatística & dados numéricos , Ecossistema , Plantas/metabolismo , Água/metabolismo , Mudança Climática/história , Secas/história , História do Século XX , História do Século XXI , Poaceae/metabolismo , Chuva , Árvores/metabolismo , Ciclo Hidrológico
5.
Glob Chang Biol ; 24(3): 1186-1200, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28949085

RESUMO

Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf-scale traits, including foliar 13 C isotope discrimination (Δ13 C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty-five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ13 C and intrinsic water-use efficiency (WUEi ) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ13 C/WUEi across biomes and species? (iii) To what extent does Δ13 C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ13 C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ13 C/WUEi . Temperature-related variables exerted larger effects than rainfall-related variables. The relative importance of photosynthesis and stomatal conductance (gs ) in determining Δ13 C differed across seasons: Δ13 C was more strongly regulated by gs during the dry-season and by photosynthetic capacity during the wet-season. Δ13 C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry- and wet-seasons and with moisture index (MI) during the wet-season but was not correlated with Δ13 C. Leaf Pmass showed significant positive relationship with MAP and Δ13 C only during the dry-season. For all leaf nutrient-related traits, the relationships obtained for Δ13 C with MAP or MI indicated that Δ13 C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ13 C across Australia.


Assuntos
Clima , Folhas de Planta/fisiologia , Plantas/classificação , Água/fisiologia , Austrália , Ecossistema , Chuva , Estações do Ano , Temperatura
6.
Int J Biometeorol ; 62(6): 1049-1061, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29423733

RESUMO

Climate change (CC) presents a challenge for the sustainable development of wheat production systems in Australia. This study aimed to (1) quantify the impact of future CC on wheat grain yield for the period centred on 2030 from the perspectives of wheat phenology, water use and water use efficiency (WUE) and (2) evaluate the effectiveness of changing sowing times and cultivars in response to the expected impacts of future CC on wheat grain yield. The daily outputs of CSIRO Conformal-Cubic Atmospheric Model for baseline and future periods were used by a stochastic weather generator to derive changes in mean climate and in climate variability and to construct local climate scenarios, which were then coupled with a wheat crop model to achieve the two research aims. We considered three locations in New South Wales, Australia, six times of sowing (TOS) and three bread wheat (Triticum aestivum L.) cultivars in this study. Simulation results show that in 2030 (1) for impact analysis, wheat phenological events are expected to occur earlier and crop water use is expected to decrease across all cases (the combination of three locations, six TOS and three cultivars), wheat grain yield would increase or decrease depending on locations and TOS; and WUE would increase in most of the cases; (2) for adaptation considerations, the combination of TOS and cultivars with the highest yield varied across locations. Wheat growers at different locations will require different strategies in managing the negative impacts or taking the opportunities of future CC.


Assuntos
Agricultura/métodos , Triticum/crescimento & desenvolvimento , Mudança Climática , Grão Comestível/crescimento & desenvolvimento , New South Wales , Estações do Ano , Água
7.
Plant Cell Environ ; 40(12): 3122-3134, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982212

RESUMO

Species are often classified along a continuum from isohydric to anisohydric, with isohydric species exhibiting tighter regulation of leaf water potential through stomatal closure in response to drought. We investigated plasticity in stomatal regulation in an isohydric (Eucalyptus camaldulensis) and an anisohydric (Acacia aptaneura) angiosperm species subject to repeated drying cycles. We also assessed foliar abscisic acid (ABA) content dynamics, aboveground/belowground biomass allocation and nonstructural carbohydrates. The anisohydric species exhibited large plasticity in the turgor loss point (ΨTLP ), with plants subject to repeated drying exhibiting lower ΨTLP and correspondingly larger stomatal conductance at low water potential, compared to plants not previously exposed to drought. The anisohydric species exhibited a switch from ABA to water potential-driven stomatal closure during drought, a response previously only reported for anisohydric gymnosperms. The isohydric species showed little osmotic adjustment, with no evidence of switching to water potential-driven stomatal closure, but did exhibit increased root:shoot ratios. There were no differences in carbohydrate depletion between species. We conclude that a large range in ΨTLP and biphasic ABA dynamics are indicative of anisohydric species, and these traits are associated with exposure to low minimum foliar water potential, dense sapwood and large resistance to xylem embolism.


Assuntos
Ácido Abscísico/metabolismo , Magnoliopsida/fisiologia , Transpiração Vegetal/fisiologia , Acacia/fisiologia , Biomassa , Dessecação , Secas , Meio Ambiente , Eucalyptus/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Osmose , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Água/fisiologia
8.
Glob Chang Biol ; 21(1): 62-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044767

RESUMO

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.


Assuntos
Incêndios , Pradaria , Austrália , Carbono/química , Clima , Mudança Climática , Ecossistema , Água
9.
Landsc Urban Plan ; 120: 16-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25550677

RESUMO

Restoration of belowground ecology is seldom a priority in designing revegetation strategies for disturbed landscapes. We determined earthworm abundance and diversity in a 16-year old grass sward (grassland), a 6-year old (Plantation-04) and a 4-year old (Plantation-06) plantation, both of mixed woody species, on a reclaimed waste disposal site, and in nearby remnant woodland, in suburban Sydney, Australia. While no catches were made in autumn, more earthworms were found in spring (21 ± 8.6 m-2) than in winter (10.2 ± 5.9 m-2) or summer (14.4 ± 5.5 m-2). Earthworm abundance in spring was in the order grassland ≈ Plantation-04 (35.2 m-2) > woodland (12.8 m-2) > Plantation-06 (0.8 m-2). None of the revegetated covers had restored earthworm diversity to levels found in the woodland. Exotic species, mostly Microscolex dubius, dominated in the four vegetation covers at any time; the only two native species (Heteroporodrilus sp. and Megascoleceides sp.) found were in the woodland. We also assessed how quality of the evolving soils from the three revegetated covers, compared with that from the woodland, impacted viability of common exotic earthworm species. Both weight gain and cocoon production by the exotic earthworms were higher in the soil from Plantation-04 than in soils from the other vegetation covers, including the woodland; the two variables were positively correlated with the pH and mineral nutrient content (as indicated by electrical conductivity that was in turn correlated with clay content) of the soil. Age of vegetation rather than its composition explained differences in the level of earthworm recovery observed.

10.
J Sci Food Agric ; 93(5): 995-1002, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23070937

RESUMO

BACKGROUND: There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). RESULTS: Ash addition marginally (P< 0.10) raised the pH in the top soil layers at both sites. The exceptionally dry season at both sites constrained yields and thwarted any likelihood of gaining yield benefits from ash-induced improvements in soil conditions. Yield improvements due to ash addition were absent at Merredin and only marginal at Richmond, where no elevated accumulation of B, Mo, Se, P or S in either the straw or seeds of wheat was observed; canola increased accumulation of Mo and Se in its shoot with acidic fly ash, but it was well below phyto toxic levels. Simulations of wheat using APSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. CONCLUSION: We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits.


Assuntos
Brassica napus/crescimento & desenvolvimento , Cinza de Carvão/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Solo/química , Triticum/crescimento & desenvolvimento , Carbonato de Cálcio/efeitos adversos , Carbonato de Cálcio/metabolismo , Sulfato de Cálcio/efeitos adversos , Sulfato de Cálcio/metabolismo , Cinza de Carvão/efeitos adversos , Cinza de Carvão/química , Cinza de Carvão/economia , Produtos Agrícolas/economia , Secas , Indústrias Extrativas e de Processamento/economia , Fertilizantes/economia , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Resíduos Industriais/economia , Metais Pesados/efeitos adversos , Metais Pesados/análise , Metais Pesados/metabolismo , Modelos Biológicos , New South Wales , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Oligoelementos/efeitos adversos , Oligoelementos/análise , Oligoelementos/metabolismo , Triticum/economia , Austrália Ocidental
11.
Tree Physiol ; 30(8): 988-1000, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20566582

RESUMO

Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).


Assuntos
Ritmo Circadiano , Eucalyptus/fisiologia , Myrtaceae/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismo , Clima , New South Wales , Solo/análise , Especificidade da Espécie
12.
J Environ Qual ; 38(4): 1466-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19465722

RESUMO

There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hypothesis that photosynthetic pigments concentrations and CO(2) assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots [barley (Hordeum vulgare) and ryegrass (Secale cereale)] and dicots [canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)] on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates (

Assuntos
Carbono , Carvão Mineral , Produtos Agrícolas/crescimento & desenvolvimento , Material Particulado , Fotossíntese , Pigmentos Biológicos/análise , Cinza de Carvão , Germinação
13.
Ecol Evol ; 9(9): 5348-5361, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110684

RESUMO

Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.

14.
Plant Cell Environ ; 31(3): 269-77, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18088329

RESUMO

Stomata respond to increasing leaf-to-air vapour pressure difference (LAVPD) (D) by closing. The mechanism by which this occurs is debated. A role for feedback and peristomatal transpiration has been proposed. In this paper, we apply a recent mechanistic model of stomatal behaviour, and compare model and experimental data for the influence of increasing D on stomatal conductance. We manipulated cuticular conductance (g(c)) by three independent methods. First, we increased g(c) by using a solvent mixture applied to both leaf surfaces prior to determining stomatal responses to D; second, we increased g(c) by increasing leaf temperature at constant D; and third, we coated a small area of leaf with a light oil to decrease g(c). In all three experiments, experimental data and model outputs showed very close agreement. We conclude, from the close agreement between model and experimental data and the fact that manipulations of g(c), and hence cuticular transpiration, influenced g(s) in ways consistent with a feedback mechanism, that feedback is central in determining stomatal responses to D.


Assuntos
Pressão do Ar , Modelos Biológicos , Epiderme Vegetal/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Temperatura , Ar , Commelina/citologia , Commelina/fisiologia , Condutividade Elétrica , Eucalyptus/citologia , Eucalyptus/fisiologia , Vicia faba/citologia , Vicia faba/fisiologia
15.
Tree Physiol ; 28(8): 1169-77, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18519248

RESUMO

We studied relationships among branch hydraulic conductivity, xylem embolism, stomatal conductance (gs), foliar nitrogen (N) concentration and specific leaf area (SLA) of seven tree species growing at four temperate woodland sites spanning a 464-1350 mm rainfall gradient. Specifically, we examined the question: are gs and foliar N concentration coordinated with branch hydraulic conductivity and, if so, what are the implications for carbon assimilation? Area-based, light-saturated photosynthetic rate (Aa) was uniquely and positively correlated with gs and foliar N concentration. Multiple regression analyses showed that, when variability in SLA was controlled for, the (positive) partial slope for each predictor remained significant. In contrast, there was a negative correlation between gs and foliar N concentration such that, for any given Aa, leaves with a high gs allocated less N to foliage than leaves with a low gs. Foliar N concentration was negatively correlated with branch hydraulic conductivity, whereas gs was positively correlated with branch hydraulic conductivity. These relationships were also significant when variability in leaf area to sapwood area ratio, gs and SLA were controlled for in a multiple regression, suggesting that the relationships were unique and independent of other confounding factors. Trees with low water transport capacity were able to support a high Aa by increasing investment in foliar N. Resource substitution occurred such that there was a trade-off between gs and foliar N in relation to branch hydraulic conductivity. High Aa could be sustained through either a high branch hydraulic conductivity and hence high gs and a low allocation to foliar N, or the effect of a low branch hydraulic conductivity and hence low gs could be offset by a high allocation to foliar N. The results are discussed in relation to mechanisms for minimizing the negative effects of limited water availability on carbon gain.


Assuntos
Carbono/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Árvores/metabolismo , Água/metabolismo , Transporte Biológico/fisiologia , Cupressaceae/anatomia & histologia , Cupressaceae/metabolismo , Eucalyptus/anatomia & histologia , Eucalyptus/metabolismo , Myrtaceae/anatomia & histologia , Myrtaceae/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/metabolismo , Árvores/anatomia & histologia
16.
Funct Plant Biol ; 44(11): 1087-1097, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480635

RESUMO

Low soil water content can limit photosynthesis by reducing stomatal conductance. Here, we explore relationships among traits pertaining to carbon uptake and pre-dawn leaf water potential (as an index of soil water availability) across eight species found in semiarid central Australia. We found that as pre-dawn leaf water potential declined, stomatal limitations to photosynthesis increased, as did foliar nitrogen, which enhanced photosynthesis. Nitrogen-fixing Acacia species had higher foliar nitrogen concentrations compared with non-nitrogen fixing species, although there was considerable variability of traits within the Acacia genus. From principal component analysis we found that the most dissimilar species was Acacia aptaneura Maslin&J.E.Reid compared with both Eucalyptus camaldulensis Dehnh. and Corymbia opaca. (D.J.Carr & S.G.M.Carr)K.D.Hill&L.A.S.Johnson, having both the largest foliar N content, equal largest leaf mass per area and experiencing the lowest pre-dawn water potential of all species. A. aptaneura has shallow roots and grows above a hardpan that excludes access to groundwater, in contrast to E. camaldulensis and C. opaca, which are known to access groundwater. We conclude that ecohydrological niche separation is an important factor driving the variability of within-biome traits related to carbon gain. These observations have important implications for global vegetation models, which are parameterised with many of the traits measured here, but are often limited by data availability.

17.
Funct Plant Biol ; 44(11): 1134-1146, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480639

RESUMO

Partitioning of water resources amongst plant species within a single climate envelope is possible if the species differ in key hydraulic traits. We examined 11 bivariate trait relationships across nine woody species found in the Ti-Tree basin of central Australia. We found that species with limited access to soil moisture, evidenced by low pre-dawn leaf water potential, displayed anisohydric behaviour (e.g. large seasonal fluctuations in minimum leaf water potential), had greater sapwood density and lower osmotic potential at full turgor. Osmotic potential at full turgor was positively correlated with the leaf water potential at turgor loss, which was, in turn, positively correlated with the water potential at incipient stomatal closure. We also observed divergent behaviour in two species of Mulga, a complex of closely related Acacia species which range from tall shrubs to low trees and dominate large areas of arid and semiarid Australia. These Mulga species had much lower minimum leaf water potentials and lower specific leaf area compared with the other seven species. Finally, one species, Hakea macrocarpa A.Cunn ex.R.Br., had traits that may allow it to tolerate seasonal dryness (through possession of small specific leaf area and cavitation resistant xylem) despite exhibiting cellular water relations that were similar to groundwater-dependent species. We conclude that traits related to water transport and leaf water status differ across species that experience differences in soil water availability and that this enables a diversity of species to exist in this low rainfall environment.

18.
Tree Physiol ; 37(7): 961-975, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369559

RESUMO

Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites.


Assuntos
Ecossistema , Eucalyptus/fisiologia , Água Subterrânea , Transpiração Vegetal , Florestas , Árvores/fisiologia , Água
19.
Sci Rep ; 7(1): 11720, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916760

RESUMO

Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (Re) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and Re increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall. In forest ecosystems, GPP and Re were insensitive to rainfall. Furthermore sensitivity of GPP to rainfall was dominated by the rainfall-driven variation of LAI rather GPP per unit LAI in non-forest ecosystems, which was not correctly reproduced by current land models, indicating that the mechanisms underlying the response of LAI to rainfall should be targeted for future model development.


Assuntos
Carbono/metabolismo , Ecossistema , Florestas , Pradaria , Folhas de Planta/anatomia & histologia , Chuva , Austrália , Ciclo do Carbono , Modelos Biológicos
20.
Sci Rep ; 6: 23113, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976754

RESUMO

The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La Niña since 1917. However, inconsistencies exist between El Niño/La Niña (ENSO) cycles and precipitation in the historical record; for example, significant ENSO-precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El Niño, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999-2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA