Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597725

RESUMO

Extreme heat caused by climate change is increasing transmission of infectious diseases resulting in a sharp rise in heat-related illness and mortality. Understanding mechanistic link between heat, inflammation and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis is crucial in febrile seizures and convulsions induced by heat stress in humans. Here we address what causes thermal hyperpnea in neonates and how is it affected by inflammation. TRPV1, a heat-activated channel is sensitized by inflammation and modulates breathing, and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures we treated neonatal rats with bacterial lipopolysaccharide, and breathing, arterial pH, in-vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. Lipopolysaccharide-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). Lipopolysaccharide exposure also elevated vagal spiking and intracellular calcium levels in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the lipopolysaccharide-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Sci Rep ; 12(1): 17182, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229510

RESUMO

Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SCN1A encodes NaV1.1, a neuronal voltage-gated Na+ channel that is highly expressed throughout the central nervous system. NaV1.1 is localized within the axon initial segment where it plays a critical role in the initiation and propagation of action potentials and neuronal firing, predominantly in γ-amino-butyric-acid (GABA)ergic neurons of the hippocampus. The objective of this study was to characterize a de novo missense variant of uncertain significance in the SCN1A gene of a proband presented with febrile status epilepticus characterized by generalized tonic clonic movements associated with ictal emesis and an abnormal breathing pattern. Screening a gene panel revealed a heterozygous missense variant of uncertain significance in the SCN1A gene, designated c.4379A>G, p.(Tyr1460Cys). The NaV1.1 wild-type (WT) and mutant channel reproduced in vivo and were transfected in HEK 293 cells. Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. This NaV1.1 variant (Tyr1460Cys) failed to express functional Na+ currents when expressed in HEK293 cells, most probably due to a pore defect of the channel given that the cell surface expression of the channel was normal. Currents generated after co-transfection with functional WT channels exhibited biophysical properties comparable to those of WT channels, which was mainly due to the functional WT channels at the cell surface. The NaV1.1 variant failed to express functional Na+ currents, most probably due to pore impairment and exhibited a well-established loss of function mechanism. The present study highlights the added-value of functional testing for understanding the pathophysiology and potential treatment decisions for patients with undiagnosed developmental epileptic encephalopathy.


Assuntos
Epilepsia Generalizada , Epilepsia , Potenciais de Ação/fisiologia , Epilepsia/genética , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Técnicas de Patch-Clamp , Convulsões , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA