Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 145(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542712

RESUMO

Drug-coated balloon therapy is a minimally invasive endovascular approach to treat obstructive arterial disease, with increasing utilization in the peripheral circulation due to improved outcomes as compared to alternative interventional modalities. Broader clinical use of drug-coated balloons is limited by an incomplete understanding of device- and patient-specific determinants of treatment efficacy, including late outcomes that are mediated by postinterventional maladaptive inward arterial remodeling. To address this knowledge gap, we propose a predictive mathematical model of pressure-mediated femoral artery remodeling following drug-coated balloon deployment, with account of drug-based modulation of resident vascular cell phenotype and common patient comorbidities, namely, hypertension and endothelial cell dysfunction. Our results elucidate how postinterventional arterial remodeling outcomes are altered by the delivery of a traditional anti-proliferative drug, as well as by codelivery with an anti-contractile drug. Our findings suggest that codelivery of anti-proliferative and anti-contractile drugs could improve patient outcomes following drug-coated balloon therapy, motivating further consideration of novel payloads in next-generation devices.


Assuntos
Angioplastia com Balão , Fármacos Cardiovasculares , Doença Arterial Periférica , Humanos , Artéria Poplítea/cirurgia , Doença Arterial Periférica/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Materiais Revestidos Biocompatíveis/uso terapêutico , Artéria Femoral/cirurgia , Resultado do Tratamento
2.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729580

RESUMO

Albeit seldom considered explicitly, the vasoactive state of a central artery can contribute to luminal control and thereby affect the in vivo values of flow-induced wall shear stress and pressure-induced intramural stress, which in turn are strong determinants of wall growth and remodeling. Here, we test the hypothesis that diminished vasoactive capacity compromises effective mechano-adaptations of central arteries. Toward this end, we use consistent methods to re-interpret published data on common carotid artery remodeling in a nonpharmacologic mouse model of induced hypertension and a model of connective tissue disorder that results in Marfan syndrome. The mice have identical genetic backgrounds and, in both cases, the data are consistent with the hypothesis considered. In particular, carotid arteries with strong (normal) vasoactive capacity tend to maintain wall thickness and in vivo axial stretch closer to homeostatic, thus resulting in passive circumferential wall stress and energy storage close to normal. We conclude that effective vasoactivity helps to control the biomechanical state in which the cells and matrix turnover, thus helping to delineate mechano-adaptive from maladaptive remodeling. Future analyses of experimental data and computational models of growth and remodeling should account for this strong coupling between smooth muscle contractile capacity and central arterial remodeling.


Assuntos
Hipertensão , Músculo Liso Vascular , Animais , Artéria Carótida Primitiva/fisiologia , Camundongos , Contração Muscular , Músculo Liso Vascular/fisiologia , Estresse Mecânico
3.
Am J Physiol Heart Circ Physiol ; 320(1): H52-H65, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373275

RESUMO

Vascular cells restructure extracellular matrix in response to aging or changes in mechanical loading. Here, we characterized collagen architecture during age-related aortic remodeling in atherosclerosis-prone mice. We hypothesized that changes in collagen fiber orientation reflect an altered balance between passive and active forces acting on the arterial wall. We examined two factors that can alter this balance, endothelial dysfunction and reduced smooth muscle cell (SMC) contractility. Collagen fiber organization was visualized by second-harmonic generation microscopy in aortic adventitia of apolipoprotein E (apoE) knockout (KO) mice at 6 wk and 6 mo of age on a chow diet and at 7.5 mo of age on a Western diet (WD), using image analysis to yield mean fiber orientation. Adventitial collagen fibers became significantly more longitudinally oriented with aging in apoE knockout mice on chow diet. Conversely, fibers became more circumferentially oriented with aging in mice on WD. Total collagen content increased significantly with age in mice fed WD. We compared expression of endothelial nitric oxide synthase and acetylcholine-mediated nitric oxide release but found no evidence of endothelial dysfunction in older mice. Time-averaged volumetric blood flow in all groups showed no significant changes. Wire myography of aortic rings revealed decreases in active stress generation with age that were significantly exacerbated in WD mice. We conclude that the aorta displays a distinct remodeling response to atherogenic stimuli, indicated by altered collagen organization. Collagen reorganization can occur in the absence of altered hemodynamics and may represent an adaptive response to reduced active stress generation by vascular SMCs.NEW & NOTEWORTHY The following major observations were made in this study: 1) aortic adventitial collagen fibers become more longitudinally oriented with aging in apolipoprotein E knockout mice fed a chow diet; 2) conversely, adventitial collagen fibers become more circumferentially oriented with aging in apoE knockout mice fed a high-fat diet; 3) adventitial collagen content increases significantly with age in mice on a high-fat diet; 4) these alterations in collagen organization occur largely in the absence of hemodynamic changes; and 5) circumferential reorientation of collagen is associated with decreased active force generation (contractility) in aged mice on a high-fat diet.


Assuntos
Aorta Abdominal/patologia , Aorta Torácica/patologia , Doenças da Aorta/patologia , Aterosclerose/patologia , Dieta Ocidental , Colágenos Fibrilares/metabolismo , Remodelação Vascular , Fatores Etários , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/fisiopatologia , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Knockout para ApoE , Vasoconstrição
4.
Am J Phys Anthropol ; 171(4): 725-732, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31912896

RESUMO

OBJECTIVES: Previously, we found that maximum ingested bite size (Vb ), the largest piece of food an animal can consume without biting it into smaller pieces first, isometrically scales relative to body size in strepsirrhines and with negative allometry in anthropoids. In the current study, we rectify the omission of great apes from the earlier sample to now characterize the Vb of the entire size-range of the order. MATERIALS AND METHODS: Five gorillas (Gorilla gorilla gorilla-G. g. gorilla) were studied to ascertain Vb in relation to the mechanical properties of five foods. RESULTS: Gorilla Vb ranged from 166.38 cm3 (for the least obdurate food: watermelon) to 8 cm3 (for the most obdurate food: turnip), with an average Vb of 33.50 cm3 across all food types. CONCLUSIONS: When these data were compared to those from our previous studies, we found that gorillas consumed relatively slightly smaller volumes of food compared to the trend found across primates. However, because the more frugivorous gorillas consumed relatively larger pieces of food than the large folivorous monkeys previously studied, including the gorilla data increased the slope of the linear regression between body mass and Vb in anthropoids. Thus, the addition of the largest living primate brings the anthropoid Vb trend closer to the Vb trend of the order. Notwithstanding, there is still negative allometry in anthropoid Vb , in contrast with the isometry in strepsirrhine Vb . Future research should include species with body masses between the smaller anthropoids and gorillas by studying the Vb of large papionids and the other great apes.


Assuntos
Antropologia Física , Força de Mordida , Gorilla gorilla/fisiologia , Mastigação/fisiologia , Ração Animal/análise , Animais , Feminino , Masculino
5.
Dev Dyn ; 247(3): 531-541, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884516

RESUMO

BACKGROUND: The formation of healthy heart valves throughout embryonic development is dependent on both genetic and epigenetic factors. Hemodynamic stimuli are important epigenetic regulators of valvulogenesis, but the resultant molecular pathways that control valve development are poorly understood. Here we describe how the heart and valves recover from the removal of a partial constriction (banding) of the OFT/ventricle junction (OVJ) that temporarily alters blood flow velocity through the embryonic chicken heart (HH stage 16/17). Recovery is described in terms of 24- and 48-hr gene expression, morphology, and OVJ hemodynamics. RESULTS: Collectively, these studies show that after 24 hr of recovery, important epithelial-mesenchymal transformation (EMT) genes TGFßRIII and Cadherin 11 (CDH11) transcript levels normalize return to control levels, in contrast to Periostin and TGFß,3 which remain altered. In addition, after 48 hr of recovery, TGFß3 and CDH11 transcript levels remain normalized, whereas TGFßRIII and Periostin are down-regulated. Analyses of OFT cushion volumes in the hearts show significant changes, as does the ratio of cushion to cell volume at 24 hr post band removal (PBR). Morphologically, the hearts show visible alteration following band removal when compared to their control age-matched counterparts. CONCLUSIONS: Although some aspects of the genetic/cellular profiles affected by altered hemodynamics seem to be reversed, not all gene expression and cardiac growth normalize following 48 hr of band removal. Developmental Dynamics 247:531-541, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Constrição , Valvas Cardíacas/embriologia , Coração/embriologia , Animais , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Embrião de Galinha , Expressão Gênica , Hemodinâmica , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
6.
J Vasc Res ; 55(5): 255-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30179877

RESUMO

Adaptive remodeling processes are essential to the maintenance and viability of coronary artery bypass grafts where clinical outcomes depend strongly on the tissue source. In this investigation, we utilized an ex vivo perfusion bioreactor to culture porcine analogs of common human bypass grafts: the internal thoracic artery (ITA), the radial artery (RA), and the great saphenous vein (GSV), and then evaluated samples acutely (6 h) and chronically (7 days) under in situ or coronary-like perfusion conditions. Although morphologically similar, primary cells harvested from the ITA illustrated lower intimal and medial, but not adventitial, cell proliferation rates than those from the RA or GSV. Basal gene expression levels were similar in all vessels, with only COL3A1, SERPINE1, FN1, and TGFB1 being differentially expressed prior to culture; however, over half of all genes were affected nominally by the culturing process. When exposed to coronary-like conditions, RAs and GSVs experienced pathological remodeling not present in ITAs or when vessels were studied in situ. Many of the remodeling genes perturbed at 6 h were restored after 7 days (COL3A1, FN1, MMP2, and TIMP1) while others (SERPINE1, TGFB1, and VCAM1) were not. The findings elucidate the potential mechanisms of graft failure and highlight strategies to encourage healthy ex vivo pregraft conditioning.


Assuntos
Artéria Torácica Interna/patologia , Perfusão , Artéria Radial/patologia , Veia Safena/patologia , Técnicas de Cultura de Tecidos , Remodelação Vascular , Animais , Reatores Biológicos , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Artéria Torácica Interna/metabolismo , Perfusão/instrumentação , Artéria Radial/metabolismo , Veia Safena/metabolismo , Transdução de Sinais , Sus scrofa , Fatores de Tempo , Técnicas de Cultura de Tecidos/instrumentação , Remodelação Vascular/genética
7.
J Biomech Eng ; 140(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975258

RESUMO

The mechanical response of intact blood vessels to applied loads can be delineated into passive and active components using an isometric decomposition approach. Whereas the passive response is due predominantly to the extracellular matrix (ECM) proteins and amorphous ground substance, the active response depends on the presence of smooth muscle cells (SMCs) and the contractile machinery activated within those cells. To better understand determinants of active stress generation within the vascular wall, we subjected porcine common carotid arteries (CCAs) to biaxial inflation-extension testing under maximally contracted or passive SMC conditions and semiquantitatively measured two known markers of the contractile SMC phenotype: smoothelin and smooth muscle-myosin heavy chain (SM-MHC). Using isometric decomposition and established constitutive models, an intuitive but novel correlation between the magnitude of active stress generation and the relative abundance of smoothelin and SM-MHC emerged. Our results reiterate the importance of stretch-dependent active stress generation to the total mechanical response. Overall these findings can be used to decouple the mechanical contribution of SMCs from the ECM and is therefore a powerful tool in the analysis of disease states and potential therapies where both constituent are altered.


Assuntos
Artéria Carótida Primitiva/fisiologia , Contração Muscular , Músculo Liso/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Suínos
8.
Ann Plast Surg ; 80(6S Suppl 6): S410-S417, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29746273

RESUMO

BACKGROUND: Biomedical devices are implanted into mammalian soft tissues to improve, monitor, or restore form or function. The utility of these implants is limited by the subsequent foreign body response (FBR), beginning with inflammation and terminating in a collagen envelope around the device, known as the capsule. This capsule then can contract and distort the shape of the device or limit its effectiveness in interacting with the surrounding host tissues. In the current study, we investigated the effect of therapeutic collagen-coated silicone discs in a rat model of the FBR. METHODS: A 3-dimensional printed mold was used to fabricate collagen-coated silicone discs incorporating 3 therapeutic agents: colchicine, a function-blocking antibody against interleukin 8 (IL-8) receptor B, and a powerful anti-inflammatory steroid, dexamethasone. Discs were implanted submuscularly into a well-characterized rat model of the FBR and evaluated for inflammatory response, fibrotic development, and cytokine release. RESULTS: Coated silicone discs exhibited reduced collagen deposition and little to no foreign body giant cells at the host-silicone interface when compared with the silicone-only group. Therapeutic hydrogels demonstrate a significant decrease in cellular infiltration into the coatings over the 2-week time point in contrast to therapeutic-free hydrogel coatings. Cytokine analysis revealed significant differences between therapeutic-free and therapeutic-containing coatings when compared with silicone-only controls. Levels of IL-1ß, IL-6, monocyte chemotactic protein 1, and macrophage inflammatory protein 3α were affected 48 hours after implantation, while differences in IL-18, growth-regulated oncogene/keratinocyte chemoattractant, and macrophage inflammatory protein 3α were observed 1 week after implantation. CONCLUSIONS: By utilizing the host's innate immune response, our engineered hydrogel coatings delivered therapeutic moieties directly to the implant microenvironment, thus delaying the FBR up to 2 weeks.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colágeno/uso terapêutico , Reação a Corpo Estranho/prevenção & controle , Hidrogéis/uso terapêutico , Próteses e Implantes/efeitos adversos , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Reação a Corpo Estranho/diagnóstico , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/patologia , Ratos , Ratos Sprague-Dawley , Silicones/efeitos adversos , Resultado do Tratamento
9.
Microsc Microanal ; 23(4): 859-871, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28712382

RESUMO

Vascular stenosis, the abnormal narrowing of blood vessels, arises from defective developmental processes or atherosclerosis-related adult pathologies. Stenosis triggers a series of adaptive cellular responses that induces adverse remodeling, which can progress to partial or complete vessel occlusion with numerous fatal outcomes. Despite its severity, the cellular interactions and biophysical cues that regulate this pathological progression are poorly understood. Here, we report the design and fabrication of a three-dimensional (3D) in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated. Tubular cellularized constructs (cytotubes) were produced, using a collagen casting system, to generate a stenotic arterial model. Fabrication methods were developed to create cytotubes containing co-cultured vascular cells, where cell viability, distribution, morphology, and contraction were examined. Fibroblasts, bone marrow primary cells, smooth muscle cells (SMCs), and endothelial cells (ECs) remained viable during culture and developed location- and time-dependent morphologies. We found cytotube contraction to depend on cellular composition, where SMC-EC co-cultures adopted intermediate contractile phenotypes between SMC- and EC-only cytotubes. Our fabrication approach and the resulting artery model can serve as an in vitro 3D culture system to investigate vascular pathogenesis and promote the tissue engineering field.


Assuntos
Constrição Patológica/patologia , Modelos Teóricos , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Animais , Comunicação Celular , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Miócitos de Músculo Liso/fisiologia , Ratos , Engenharia Tecidual/métodos
10.
Microsc Microanal ; 22(1): 55-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739629

RESUMO

Characterization of collagen fiber angle distribution throughout the blood vessel wall provides insight into the mechanical behavior of healthy and diseased arteries and their capacity to remodel. Atherosclerotic plaque contributes to the overall mechanical behavior, yet little is known experimentally about how collagen fiber orientation is influenced by atherogenesis. We hypothesized that atherosclerotic lesion development, and the factors contributing to lesion development, leads to a shift in collagen fiber angles within the aorta. Second-harmonic generation microscopy was used to visualize the three-dimensional organization of collagen throughout the aortic wall and to examine structural differences in mice maintained on high-fat Western diet versus age-matched chow diet mice in a model of atherosclerosis. Image analysis was performed on thoracic and abdominal sections of the aorta from each mouse to determine fiber orientation, with the circumferential (0°) and blood flow directions (axial ±90°) as the two reference points. All measurements were used in a multiple regression analysis to determine the factors having a significant influence on mean collagen fiber angle. We found that mean absolute angle of collagen fibers is 43° lower in Western diet mice compared with chow diet mice. Mice on a chow diet have a mean collagen fiber angle of ±63°, whereas mice on a Western diet have a more circumferential fiber orientation (~20°). This apparent shift in absolute angle coincides with the development of extensive aortic atherosclerosis, suggesting that atherosclerotic factors contribute to collagen fiber angle orientation.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Colágenos Fibrilares/análise , Microscopia , Animais , Dieta/métodos , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos
11.
J Mech Behav Biomed Mater ; 154: 106503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522154

RESUMO

Low temperatures slow or halt undesired biological and chemical processes, protecting cells, tissues, and organs during storage. Cryopreservation techniques, including controlled media exchange and regulated freezing conditions, aim to mitigate the physical consequences of freezing. Dimethyl sulfoxide (DMSO), for example, is a penetrating cryoprotecting agent (CPA) that minimizes ice crystal growth by replacing intracellular water, while polyvinyl alcohol (PVA) is a nonpenetrating CPA that prevents recrystallization during thawing. Since proteins and ground substance dominate the passive properties of soft biological tissues, we studied how different freezing rates, storage temperatures, storage durations, and the presence of cryoprotecting agents (5% [v/v] DMSO + 1 mg/mL PVA) impact the histomechanical properties of the internal thoracic artery (ITA), a clinically relevant blood vessel with both elastic and muscular characteristics. Remarkably, biaxial mechanical analyses failed to reveal significant differences among the ten groups tested, suggesting that mechanical properties are virtually independent of the cryopreservation technique. Scanning electron microscopy revealed minor CPA-independent delamination in rapidly frozen samples, while cryoprotected ITAs had better post-thaw viability than their unprotected counterparts using methyl thiazole-tetrazolium (MTT) metabolic assays, especially when frozen at a controlled rate. These results can be used to inform ongoing and future studies in vascular engineering, physiology, and mechanics.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Dimetil Sulfóxido/química , Crioprotetores/química , Criopreservação/métodos , Congelamento , Artérias
12.
ACS Appl Bio Mater ; 7(5): 3041-3049, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38661721

RESUMO

Drug-coated balloon (DCB) therapy is a promising endovascular treatment for obstructive arterial disease. The goal of DCB therapy is restoration of lumen patency in a stenotic vessel, whereby balloon deployment both mechanically compresses the offending lesion and locally delivers an antiproliferative drug, most commonly paclitaxel (PTX) or derivative compounds, to the arterial wall. Favorable long-term outcomes of DCB therapy thus require predictable and adequate PTX delivery, a process facilitated by coating excipients that promotes rapid drug transfer during the inflation period. While a variety of excipients have been considered in DCB design, there is a lack of understanding about the coating-specific biophysical determinants of essential device function, namely, acute drug transfer. We consider two hydrophilic excipients for PTX delivery, urea (UR) and poly(ethylene glycol) (PEG), and examine how compositional and preparational variables in the balloon surface spray-coating process impact resultant coating microstructure and in turn acute PTX transfer to the arterial wall. Specifically, we use scanning electron image analyses to quantify how coating microstructure is altered by excipient solid content and balloon-to-nozzle spray distance during the coating procedure and correlate obtained microstructural descriptors of coating aggregation to the efficiency of acute PTX transfer in a one-dimensional ex vivo model of DCB deployment. Experimental results suggest that despite the qualitatively different coating surface microstructures and apparent PTX transfer mechanisms exhibited with these excipients, the drug delivery efficiency is generally enhanced by coating aggregation on the balloon surface. We illustrate this microstructure-function relation with a finite element-based computational model of DCB deployment, which along with our experimental findings suggests a general design principle to increase drug delivery efficiency across a broad range of DCB designs.


Assuntos
Materiais Revestidos Biocompatíveis , Interações Hidrofóbicas e Hidrofílicas , Paclitaxel , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Polietilenoglicóis/química , Tamanho da Partícula , Humanos , Ureia/química , Angioplastia com Balão , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
13.
Cardiovasc Eng Technol ; 14(3): 404-418, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828977

RESUMO

PURPOSE: Premature coronary artery bypass graft (CABG) failure has been linked to geometric, mechanical, and compositional discrepancies between host and graft tissues. Acute hemodynamic disturbances and the introduction of wall stress gradients trigger a myriad of mechanobiological processes at the anastomosis that can be associated with restenosis and graft failure. Although the origins of coronary artery disease dictate the anastomotic target, an opportunity exists for graft-vessel optimization through rationale graft selection. METHODS: Here we explored the four distinct regions of the left (L) and right (R) ITA (1 = proximal, 2 = submuscular, 3 = middle, 4 = distal), and four common target vessels in the coronary circulation including the proximal and distal left anterior descending (PLAD & DLAD), right coronary (RCA), and left circumflex (LCX) arteries. Benchtop biaxial mechanical data was used to acquire constitutive model parameters of these tissues and enable vessel-specific computational models to elucidate the mechanical consequences of 32 unique graft-target combinations. RESULTS: Simulations revealed the maximum principal wall stresses for the PLAD, RCA, and LCX occurred when anastomosed with LITA1, and the maximum flow-induced shear stress occurred with LITA4. The DLAD, on the other hand, reached stress maximums when anastomosed to LITA4. Using a normalized objective function of simulation output variables, we found LITA2 to be the best graft choice for both LADs, RITA3 for the RCA, and LITA3 for the LCX. CONCLUSION: Although mechanical compatibility is just one of many factors determining bypass graft outcomes, our data suggests improvements can be made to the grafting process through vessel-specific regional optimization.


Assuntos
Ponte de Artéria Coronária , Doença da Artéria Coronariana , Humanos , Ponte de Artéria Coronária/efeitos adversos , Vasos Coronários/cirurgia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Circulação Coronária , Coração , Angiografia Coronária
14.
J Mech Behav Biomed Mater ; 141: 105745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893686

RESUMO

The murine aorta is a complex, heterogeneous structure that undergoes large and sometimes asymmetrical deformations under loading. For analytical convenience, mechanical behavior is predominantly described using global quantities that fail to capture critical local information essential to elucidating aortopathic processes. Here, in our methodological study, we used stereo digital image correlation (StereoDIC) to measure the strain profiles of speckle-patterned healthy and elastase-infused, pathological mouse aortas submerged in a temperature-controlled liquid medium. Our unique device rotates two 15-degree stereo-angle cameras that gather sequential digital images while simultaneously performing conventional biaxial pressure-diameter and force-length testing. A StereoDIC Variable Ray Origin (VRO) camera system model is employed to correct for high-magnification image refraction through hydrating physiological media. The resultant Green-Lagrange surface strain tensor was quantified at different blood vessel inflation pressures, axial extension ratios, and after aneurysm-initiating elastase exposure. Quantified results capture large, heterogeneous, inflation-related, circumferential strains that are drastically reduced in elastase-infused tissues. Shear strains, however, were very small on the tissue's surface. Spatially averaged StereoDIC-based strains were generally more detailed than those determined using conventional edge detection techniques.


Assuntos
Aorta , Fenômenos Mecânicos , Animais , Camundongos
15.
J Mech Behav Biomed Mater ; 116: 104314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476887

RESUMO

The internal thoracic artery (ITA) is the principal choice for coronary artery bypass grafting (CABG) due to its mechanical compatibility, histological composition, anti-thrombogenic lumen, and single anastomotic junction. Originating at the subclavian artery, traversing the thoracic cavity, and terminating at the superior epigastric and musculophrenic bifurcation, bilateral ITAs follow a protracted circuitous pathway. The physiological hemodynamics, anatomical configuration, and perivascular changes that occur throughout this length influence the tissue's microstructure and gross mechanical properties. Since histomechanics play a major role in premature graft failure we used inflation-extension testing to quantify the regional material and biaxial mechanical properties at four distinct locations along the left (L) and right (R) ITA and fit the results to a structurally-motivated constitutive model. Our comparative analysis of 44 vessel segments revealed a significant increase in the amount of collagen but not smooth muscle and a significant decrease in elastin and elastic lamellae present with distance from the heart. A subsequent decrease in the total deformation energy and isotropic contribution to the strain energy was present in the LITA but not RITA. Circumferential stress and compliance generally decreased along the length of the LITA while axial stress increased in the RITA. When comparing RITAs to LITAs, some morphological and histological differences were found in proximal sections while distal sections revealed differences predominantly in compliance and axial stress. Overall, this information can be used to better guide graft selection, graft preparation, and xenograft-based tissue-engineering strategies for CABG.


Assuntos
Artéria Torácica Interna , Ponte de Artéria Coronária , Coração , Anastomose de Artéria Torácica Interna-Coronária
16.
J Biomech ; 125: 110543, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174532

RESUMO

Transforming growth factor-beta (TGFß-1, -2, -3) ligands act through a common receptor complex yet each is expressed in a unique and overlapping fashion throughout development. TGFß plays a role in extra-cellular matrix composition with mutations to genes encoding TGFß and TGFß signaling molecules contributing to diverse and deadly thoracic aortopathies common in Loeys-Dietz syndrome (LDS). In this investigation, we studied the TGFß ligand-specific mechanical phenotype of ascending thoracic aortas (ATA) taken from 4-to-6 months-old Tgfb1+/-, Tgfb2+/-, and Tgfb3+/- mice, their wild-type (WT) controls, and an elastase infusion model representative of severe elastolysis. Heterozygous mice were studied at an age without dilation to elucidate potential pre-aortopathic mechanical cues. Our findings indicate that ATAs from Tgfb2+/- mice demonstrated significant wall thickening, a corresponding decrease in biaxial stress, decreased biaxial stiffness, and a decrease in stored energy. These results were unlike the pathological elastase model where decreases in biaxial stretch were found along with increases in diameter, biaxial stress, and biaxial stiffness. ATAs from Tgfb1+/- and Tgfb3+/-, on the other hand, had few mechanical differences when compared to wild-type controls. Although aortopathy generally occurs later in development, our findings reveal that in 4-to-6 month-old animals, only Tgfb2+/- mice demonstrate a significant phenotype that fails to model ubiquitous elastolysis.


Assuntos
Síndrome de Loeys-Dietz , Elastase Pancreática , Animais , Aorta , Camundongos , Mutação , Fator de Crescimento Transformador beta2/genética
17.
Ann Biomed Eng ; 49(1): 487-501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32728831

RESUMO

The great saphenous vein (GSV) has served as a coronary artery bypass graft (CABG) conduit for over 50 years. Despite prevalent use, first-year failure rates remain high compared to arterial autograft options. Amongst other factors, vein graft failure can be attributed to material and mechanical mismatching that lead to apoptosis, inflammation, and intimal-medial hyperplasia. Through the implementation of the continuum mechanical-based theory of "stress-mediated growth and remodeling," we hypothesize that the mechanical properties of porcine GSV grafts can be favorably tuned for CABG applications prior to implantation using a prolonged but gradual transition from venous to arterial loading conditions in an inflammatory and thrombogenic deficient environment. To test this hypothesis, we used a hemodynamic-mimetic perfusion bioreactor to guide remodeling through stepwise incremental changes in pressure and flow over the course of 21-day cultures. Biaxial mechanical testing of vessels pre- and post-remodeling was performed, with results fit to structurally-motivated constitutive models using non-parametric bootstrapping. The theory of "small-on-large" was used to describe appropriate stiffness moduli, while histology and viability assays confirmed microstructural adaptations and vessel viability. Results suggest that stepwise transition from venous-to-arterial conditions results in a partial restoration of circumferential stretch and circumferential, but not axial, stress through vessel dilation and wall thickening in a primarily outward remodeling process. These remodeled tissues also exhibited decreased mechanical isotropy and circumferential, but not axial, stiffening. In contrast, only increases in axial stiffness were observed using culture under venous perfusion conditions and those tissues experienced moderate intimal resorption.


Assuntos
Veia Safena/fisiologia , Animais , Fenômenos Biomecânicos , Reatores Biológicos , Ponte de Artéria Coronária , Feminino , Perfusão , Veia Safena/crescimento & desenvolvimento , Estresse Mecânico , Suínos , Técnicas de Cultura de Tecidos
18.
J Cardiovasc Dev Dis ; 8(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801433

RESUMO

Among the three transforming growth factor beta (TGFß) ligands, TGFß2 is essential for heart development and is produced by multiple cell types, including myocardium. Heterozygous mutations in TGFB2 in patients of connective tissue disorders result in congenital heart defects and adult valve malformations, including mitral valve prolapse (MVP) with or without regurgitation. Tgfb2 germline knockout fetuses exhibit multiple cardiac defects but the role of myocardial-TGFß2 in heart development is yet to be elucidated. Here, myocardial Tgfb2 conditional knockout (CKO) embryos were generated by crossing Tgfb2flox mice with Tgfb2+/-; cTntCre mice. Tgfb2flox/- embryos were normal, viable. Cell fate mapping was done using dual-fluorescent mT/mG+/- mice. Cre-mediated Tgfb2 deletion was assessed by genomic PCR. RNAscope in situ hybridization was used to detect the loss of myocardial Tgfb2 expression. Histological, morphometric, immunohistochemical, and in situ hybridization analyses of CKOs and littermate controls at different stages of heart development (E12.5-E18.5) were used to determine the role of myocardium-derived TGFß2 in atrioventricular (AV) cushion remodeling and myocardial development. CKOs exhibit a thin ventricular myocardium, AV cushion remodeling defects and developed incomplete AV septation defects. The loss of myocardial Tgfb2 resulted in impaired cushion maturation and dysregulated cell death. Phosphorylated SMAD2, a surrogate for TGFß signaling, was "paradoxically" increased in both AV cushion mesenchyme and ventricular myocardium in the CKOs. Our results indicate that TGFß2 produced by cardiomyocytes acting as cells autonomously on myocardium and via paracrine signaling on AV cushions are required for heart development.

19.
Sci Rep ; 11(1): 8584, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883612

RESUMO

Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S. and 10th leading cause of death in men over age 55, affecting thousands of patients. Despite the prevalence of AAA, no safe and efficient pharmacotherapies exist for patients. The deterioration of the elastic lamina in the aneurysmal wall is a consistent feature of AAAs, making it an ideal target for delivering drugs to the AAA site. In this research, we conjugated nanoparticles with an elastin antibody that only targets degraded elastin while sparing healthy elastin. After induction of aneurysm by 4-week infusion of angiotensin II (Ang II), two biweekly intravenous injections of pentagalloyl glucose (PGG)-loaded nanoparticles conjugated with elastin antibody delivered the drug to the aneurysm site. We show that targeted delivery of PGG could reverse the aortic dilation, ameliorate the inflammation, restore the elastic lamina, and improve the mechanical properties of the aorta at the AAA site. Therefore, simple iv therapy of PGG loaded nanoparticles can be an effective treatment option for early to middle stage aneurysms to reverse disease progression and return the aorta to normal homeostasis.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Taninos Hidrolisáveis/uso terapêutico , Nanopartículas/uso terapêutico , Animais , Anticorpos/imunologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Elastina/imunologia , Taninos Hidrolisáveis/administração & dosagem , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Soroalbumina Bovina
20.
Am J Physiol Heart Circ Physiol ; 299(6): H1875-83, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20852047

RESUMO

Elucidating early time courses of biomechanical responses by arteries to altered mechanical stimuli is paramount to understanding and eventually predicting long-term adaptations. In a previous study, we reported marked long-term (at 35-56 days) consequences of increased pulsatile hemodynamics on arterial structure and mechanics. Motivated by those findings, we focus herein on arterial responses over shorter periods (at 7, 10, and 14 days) following placement of a constrictive band on the aortic arch between the innominate and left carotid arteries of wild-type mice, which significantly increases pulsatility in the right carotid artery. We quantified hemodynamics in vivo using noninvasive ultrasound and measured wall properties and composition in vitro using biaxial mechanical testing and standard (immuno)histology. Compared with both baseline carotid arteries and left carotids after banding, right carotids after banding experienced a significant increase in both pulse pressure, which peaked at day 7, and a pulsatility index for velocity, which continued to rise over the 42-day study despite a transient increase in mean flow that peaked at day 7. Wall thickness and inner diameter also increased significantly in the right carotids, both peaking at day 14, with an associated marked early reduction in the in vivo axial stretch and a persistent decrease in smooth muscle contractility. Glycosaminoglycan content also increased within the wall, peaking at day 14, whereas increases in monocyte chemoattractant protein-1 activity and the collagen-to-elastin ratio continued to rise. These findings confirm that pulsatility is an important modulator of wall geometry, structure, and properties but reveal different early time courses for different microscopic and macroscopic metrics, presumably due to the separate degrees of influence of pressure and flow.


Assuntos
Pressão Sanguínea , Artéria Carótida Primitiva/crescimento & desenvolvimento , Hipertensão/fisiopatologia , Mecanotransdução Celular , Fluxo Pulsátil , Animais , Fenômenos Biomecânicos , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/fisiopatologia , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Elasticidade , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Hipertensão/diagnóstico por imagem , Hipertensão/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/crescimento & desenvolvimento , Músculo Liso Vascular/fisiopatologia , Fluxo Sanguíneo Regional , Fatores de Tempo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA