Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 19(4): 386-396, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556002

RESUMO

Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (TFH cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting TFH cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust TFH cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of TFH cell differentiation and a promising target for TFH cell-skewing vaccine adjuvants.


Assuntos
Ativação Linfocitária/imunologia , Viabilidade Microbiana/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 8 Toll-Like/imunologia , Vacinas Atenuadas/imunologia , Adulto , Animais , Formação de Anticorpos/imunologia , Diferenciação Celular/imunologia , Feminino , Humanos , Masculino , Suínos
2.
Eur J Immunol ; 50(11): 1712-1728, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558930

RESUMO

Pulmonary mucosal immune response is critical for preventing opportunistic Aspergillus fumigatus infections. Although fungus-specific CD4+ T cells in blood are described to reflect the actual host-pathogen interaction status, little is known about Aspergillus-specific pulmonary T-cell responses. Here, we exploit the domestic pig as human-relevant large animal model and introduce antigen-specific T-cell enrichment in pigs to address Aspergillus-specific T cells in the lung compared to peripheral blood. In healthy, environmentally Aspergillus-exposed pigs, the fungus-specific T cells are detectable in blood in similar frequencies as observed in healthy humans and exhibit a Th1 phenotype. Exposing pigs to 106 cfu/m3 conidia induces a long-lasting accumulation of Aspergillus-specific Th1 cells locally in the lung and also systemically. Temporary immunosuppression during Aspergillus-exposure showed a drastic reduction in the lung-infiltrating antifungal T-cell responses more than 2 weeks after abrogation of the suppressive treatment. This was reflected in blood, but to a much lesser extent. In conclusion, by using the human-relevant large animal model the pig, this study highlights that the blood clearly reflects the mucosal fungal-specific T-cell reactivity in environmentally exposed as well as experimentally exposed healthy pigs. But, immunosuppression significantly impacts the mucosal site in contrast to the initial systemic immune response.


Assuntos
Antifúngicos/imunologia , Aspergillus fumigatus/imunologia , Aspergillus/imunologia , Sus scrofa/imunologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Esporos Fúngicos/imunologia , Suínos , Células Th1/imunologia
3.
Mediators Inflamm ; 2018: 9368295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670931

RESUMO

The gut epithelium constitutes an interface between the intestinal contents and the underlying gut-associated lymphoid tissue (GALT) including dendritic cells (DC). Interactions of intestinal epithelial cells (IEC) and resident DC are characterized by bidirectional crosstalk mediated by various factors, such as transforming growth factor-ß (TGF-ß) and thymic stromal lymphopoietin (TSLP). In the present study, we aimed (1) to model the interplay of both cell types in a porcine in vitro coculture consisting of IEC (cell line IPEC-J2) and monocyte-derived DC (MoDC) and (2) to assess whether immune responses to bacteria are altered because of the interplay between IPEC-J2 cells and MoDC. With regard to the latter, we focused on the inflammasome pathway. Here, we propose caspase-13 as a promising candidate for the noncanonical inflammasome activation in pigs. We conducted challenge experiments with enterotoxigenic Escherichia coli (ETEC) and probiotic Enterococcus faecium (E. faecium) NCIMB 10415. As potential mediators of IEC/DC interactions, TGF-ß and TSLP were selected for analyses. Cocultured MoDC showed attenuated ETEC-induced inflammasome-related and proinflammatory interleukin (IL)-8 reactions compared with MoDC monocultures. Caspase-13 was more strongly expressed in IPEC-J2 cells cocultured with MoDC and upon ETEC incubation. We found that IPEC-J2 cells and MoDC were capable of releasing TSLP. The latter cells secreted greater amounts of TSLP when cocultured with IPEC-J2 cells. TGF-ß was not modulated under the present experimental conditions in either cell types. We conclude that, in the presence of IPEC-J2 cells, porcine MoDC exhibited a more tolerogenic phenotype, which might be partially regulated by autocrine TSLP production. Noncanonical inflammasome signaling appeared to be modulated in IPEC-J2 cells. Our results indicate that the reciprocal interplay of the intestinal epithelium and GALT is essential for promoting balanced immune responses.


Assuntos
Enterococcus faecium/imunologia , Escherichia coli Enterotoxigênica/imunologia , Probióticos/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Células Dendríticas/metabolismo , Enterococcus faecium/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamassomos/metabolismo , Interleucina-8/metabolismo , Intestinos/citologia , Suínos
4.
Clin Sci (Lond) ; 128(2): 95-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25052203

RESUMO

In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalomielite Autoimune Experimental/tratamento farmacológico , Microglia/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Receptor Tipo 2 de Angiotensina/agonistas , Linfócitos T/efeitos dos fármacos , Animais , Feminino , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico/metabolismo , Ratos , Receptor Tipo 2 de Angiotensina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Linfócitos T/metabolismo
5.
J Immunol ; 191(11): 5594-602, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24146044

RESUMO

Although mechanisms leading to brain-specific inflammation and T cell activation have been widely investigated, regulatory mechanisms of local innate immune cells in the brain are only poorly understood. In this study, to our knowledge we show for the first time that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia are potent inducers of Ag-specific CD4(+)Foxp3(+) regulatory T cells (Tregs) in vitro. Microglia differentially regulated MHC class II expression, costimulatory molecules, and IL-10 depending on the amount of IFN-γ challenge and Ag dose, promoting either effector T cell or Treg induction. Microglia-induced Tregs were functionally active in vitro by inhibiting Ag-specific proliferation of effector T cells, and in vivo by attenuating experimental autoimmune encephalomyelitis disease course after adoptive transfer. These results indicate that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia have regulatory properties potentially influencing local immune responses in the CNS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/imunologia , Microglia/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Tolerância Imunológica , Interferon gama/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Mol Ther ; 22(10): 1730-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24985163

RESUMO

New treatment strategies for inflammatory bowel disease are needed and parasitic nematode infections or application of helminth components improve clinical and experimental gut inflammation. We genetically modified the probiotic bacterium Escherichia coli Nissle 1917 to secrete the powerful nematode immunomodulator cystatin in the gut. This treatment was tested in a murine colitis model and on post-weaning intestinal inflammation in pigs, an outbred model with a gastrointestinal system similar to humans. Application of the transgenic probiotic significantly decreased intestinal inflammation in murine acute colitis, associated with increased frequencies of Foxp3(+) Tregs, suppressed local interleukin (IL)-6 and IL-17A production, decreased macrophage inflammatory protein-1α/ß, monocyte chemoattractant protein -1/3, and regulated upon activation, normal T-cell expressed, and secreted expression and fewer inflammatory macrophages in the colon. High dosages of the transgenic probiotic were well tolerated by post-weaning piglets. Despite being recognized by T cells, secreted cystatin did not lead to changes in cytokine expression or macrophage activation in the colon. However, colon transepithelial resistance and barrier function were significantly improved in pigs receiving the transgenic probotic and post-weaning colon inflammation was reduced. Thus, the anti-inflammatory efficiency of a probiotic can be improved by a nematode-derived immunoregulatory transgene. This treatment regimen should be further investigated as a potential therapeutic option for inflammatory bowel disease.


Assuntos
Gastroenterite/terapia , Fatores Imunológicos/biossíntese , Fatores Imunológicos/genética , Probióticos/metabolismo , Probióticos/uso terapêutico , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colite/terapia , Cistatinas/biossíntese , Cistatinas/genética , Cistatinas/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Gastroenterite/imunologia , Gastroenterite/metabolismo , Gastroenterite/parasitologia , Expressão Gênica , Fatores Imunológicos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Probióticos/administração & dosagem , Probióticos/efeitos adversos , Suínos
7.
PLoS Negl Trop Dis ; 18(6): e0012279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889190

RESUMO

BACKGROUND: The standard diagnosis of Ascaris lumbricoides and other soil-transmitted helminth (STH) infections relies on the detection of worm eggs by copromicroscopy. However, this method is dependent on worm patency and shows only limited accuracy in low-intensity infection settings. We aimed to decipher the diagnostic accuracy of different antibodies using various Ascaris antigens in reference to copromicroscopy and quantitative PCR (qPCR), four months after national STH preventative chemotherapy among school children in western Kenya. METHODOLOGY: STH infection status of 390 school children was evaluated via copromicroscopy (Kato-Katz and mini-FLOTAC) and qPCR. In parallel, Ascaris-specific antibody profiles against larval and adult worm lysates, and adult worm excretory-secretory (ES) products were determined by enzyme-linked immunosorbent assay. Antibody cross-reactivity was evaluated using the closely related zoonotic roundworm species Toxocara cati and Toxocara canis. The diagnostic accuracy of each antibody was evaluated using receiver operating curve analysis and the correspondent area under the curve (AUC). PRINCIPAL FINDINGS: Ascaris was the predominant helminth infection with an overall prevalence of 14.9% (58/390). The sensitivity of mini-FLOTAC and Kato-Katz for Ascaris diagnosis reached only 53.5% and 63.8%, respectively compared to qPCR. Although being more sensitive, qPCR values correlated with microscopic egg counts (R = -0.71, P<0.001), in contrast to antibody levels. Strikingly, IgG antibodies recognizing the ES products of adult Ascaris worms reliably diagnosed active Ascaris infection as determined by qPCR and microscopy, with IgG1 displaying the highest accuracy (AUC = 0.83, 95% CI: 0.75-0.91). CONCLUSION: IgG1 antibody responses against adult Ascaris-ES products hold a promising potential for complementing the standard fecal and molecular techniques employed for monitoring Ascaris infections. This is of particular importance in the context of deworming programs as the antibody diagnostic accuracy was independent of egg counts.


Assuntos
Anticorpos Anti-Helmínticos , Ascaríase , Fezes , Sensibilidade e Especificidade , Ascaríase/diagnóstico , Ascaríase/epidemiologia , Ascaríase/imunologia , Humanos , Anticorpos Anti-Helmínticos/sangue , Animais , Criança , Fezes/parasitologia , Feminino , Masculino , Quênia/epidemiologia , Adolescente , Microscopia/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ascaris lumbricoides/imunologia , Ascaris lumbricoides/isolamento & purificação , Antígenos de Helmintos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Ascaris/imunologia , Ascaris/isolamento & purificação , Doenças Endêmicas
8.
Front Immunol ; 15: 1396446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799456

RESUMO

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Assuntos
Ascaríase , Ascaris suum , Células Th1 , Células Th2 , Animais , Ascaris suum/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Células Th2/imunologia , Suínos , Células Th1/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Pulmão/imunologia , Pulmão/parasitologia , Larva/imunologia , Citocinas/metabolismo
9.
Adv Parasitol ; 123: 51-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38448148

RESUMO

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Assuntos
Anti-Helmínticos , Zoonoses , Animais , Humanos , Zoonoses/prevenção & controle , Caenorhabditis elegans , Academias e Institutos , Pesquisa , Anti-Helmínticos/uso terapêutico
10.
Methods Mol Biol ; 2673: 89-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258908

RESUMO

Antigen complexity represents a major challenge for scoring CD4+ T cell immunogenicity, a key hallmark of immunity and with great potential to improve vaccine development. In this chapter, we provide a comprehensive picture of a pipeline that can be applied to virtually any complex antigen to overcome different limitations. Antigens are characterized by Mass Spectrometry to determine the available protein sources and their abundances. A reconstituted in vitro antigen processing system is applied along with bioinformatics tools to prioritize the list of candidates. Finally, the immunogenicity of candidate peptides is validated ex vivo using PBMCs from HLA-typed individuals. This protocol compiles the essential information for executing the whole pipeline while focusing on the candidate epitope prioritizing scheme.


Assuntos
Linfócitos T CD4-Positivos , Parasitos , Animais , Humanos , Epitopos de Linfócito T , Parasitos/metabolismo , Apresentação de Antígeno , Peptídeos/metabolismo
11.
Parasit Vectors ; 16(1): 243, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468906

RESUMO

BACKGROUND: Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. METHODS: Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. RESULTS: We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100-1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. CONCLUSIONS: Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro.


Assuntos
Anti-Helmínticos , Ascaríase , Ascaris suum , Humanos , Animais , Suínos , Metanol/farmacologia , Metanol/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Xantenos/farmacologia , Xantenos/uso terapêutico , Ascaríase/parasitologia , Larva
12.
Mucosal Immunol ; 15(6): 1270-1282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35690651

RESUMO

The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.


Assuntos
Infecções por Nematoides , Células Th2 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Interferon gama , Células Th1 , Camundongos Endogâmicos BALB C
13.
Front Immunol ; 13: 1012717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439124

RESUMO

Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.


Assuntos
Ascaris suum , Suínos , Animais , Células Dendríticas , Interleucina-12/metabolismo , Citocinas/metabolismo , Receptores Toll-Like/metabolismo , Células Matadoras Naturais/metabolismo
14.
Microbiome ; 10(1): 229, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527132

RESUMO

BACKGROUND: Intestinal helminths are extremely prevalent among humans and animals. In particular, intestinal roundworms affect more than 1 billion people around the globe and are a major issue in animal husbandry. These pathogens live in intimate contact with the host gut microbiota and harbor bacteria within their own intestines. Knowledge of the bacterial host microbiome at the site of infection is limited, and data on the parasite microbiome is, to the best of our knowledge, non-existent. RESULTS: The intestinal microbiome of the natural parasite and zoonotic macropathogen, Ascaris suum was analyzed in contrast to the diversity and composition of the infected host gut. 16S sequencing of the parasite intestine and host intestinal compartments showed that the parasite gut has a significantly less diverse microbiome than its host, and the host gut exhibits a reduced microbiome diversity at the site of parasite infection in the jejunum. While the host's microbiome composition at the site of infection significantly determines the microbiome composition of its parasite, microbial signatures differentiate the nematodes from their hosts as the Ascaris intestine supports the growth of microbes that are otherwise under-represented in the host gut. CONCLUSION: Our data clearly indicate that a nematode infection reduces the microbiome diversity of the host gut, and that the nematode gut represents a selective bacterial niche harboring bacteria that are derived but distinct from the host gut. Video Abstract.


Assuntos
Ascaris suum , Microbioma Gastrointestinal , Helmintos , Microbiota , Nematoides , Parasitos , Humanos , Animais , Bactérias/genética
15.
J Neurosci Methods ; 366: 109420, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808220

RESUMO

BACKGROUND: The crosstalk and reactivity of the cell type glia, especially microglia and astrocytes, have progressively gathered research attention in understanding proper brain function regulated by the innate immune response. Therefore, methods to isolate highly viable and pure glia for the analysis on a cell-specific level are indispensable. NEW METHOD: We modified previously established techniques: Animal numbers were reduced by multiple microglial harvests from the same mixed glial culture, thereby maximizing microglial yields following the principles of the 3Rs (replacement, reduction, and refinement). We optimized Magnetic-activated cell sorting (MACS®) of microglia and astrocytes by applying cultivated primary glial cell suspensions instead of directly sorting dissociated single cell suspension. RESULTS: We generated highly viable and pure microglia and astrocytes derived from a single mixed culture with a purity of ~99%, as confirmed by FACS analysis. Field emission scanning electron microscopy (FESEM) demonstrated integrity of the MACS-purified glial cells. Tumor necrosis factor (TNF) and Interleukin-10 (IL-10) ELISA confirmed pro- and anti-inflammatory responses to be functional in purified glia, but significantly weakened compared to non-purified cells, further highlighting the importance of cellular crosstalk for proper immune activation. COMPARISON WITH EXISTING METHOD(S): Unlike previous studies that either isolated a single type of glia or displayed a substantial proportion of contamination with other cell types, we achieved isolation of both microglia and astrocytes at an increased purity (99-100%). CONCLUSIONS: We have created an optimized protocol for the efficient purification of both primary microglia and astrocytes. Our results clearly demonstrate the importance of purity in glial cell cultivation in order to examine immune responses, which particularly holds true for astrocytes. We propose the novel protocol as a tool to investigate the cell type-specific crosstalk between microglia and astrocytes in the frame of CNS diseases.


Assuntos
Astrócitos , Microglia , Animais , Astrócitos/metabolismo , Separação Celular/métodos , Células Cultivadas , Camundongos , Neuroglia
16.
Vaccine ; 40(7): 1038-1046, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35033388

RESUMO

Streptococcus pneumoniae (S. pneumoniae)infections are the leading cause of child mortality globally. Currentvaccines fail to induceaprotective immune response towards a conserved part of the pathogen,resulting in newserotypescausing disease. Therefore, new vaccinestrategies are urgently needed.Described is atwo-pronged approach combiningS. pneumoniaeproteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA),with aprecisely defined synthetic oligosaccharide,wherebythe carrier protein actsas a serotype-independent antigen to provideadditional protection. Proof of concept in mice and swine modelsrevealed thatthe conjugatesinhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model.Acombination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Glicoconjugados , Camundongos , Vacinas Pneumocócicas , Sorogrupo , Suínos
17.
Trends Parasitol ; 37(3): 251-262, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33008723

RESUMO

Ascariasis is a globally spread intestinal nematode infection of humans and a considerable concern in pig husbandry. Ascaris accomplishes a complex body migration from the intestine via the liver and lung before returning to the intestine. Tissue migration and the habitat shared with a complex microbial community pose the question of how the nematode interacts with microbes and host cells from various tissues. This review addresses the current knowledge of the trilateral relationship between Ascaris, its microbial environment, and host cells, and discusses novel approaches targeting these interactions to combat this widespread infection of livestock and man.


Assuntos
Ascaríase/veterinária , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Parasita , Doenças dos Suínos/microbiologia , Doenças dos Suínos/parasitologia , Animais , Ascaríase/microbiologia , Ascaríase/parasitologia , Ascaris/fisiologia , Meio Ambiente , Suínos
18.
Microorganisms ; 9(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34576723

RESUMO

Containment of acute Toxoplasma gondii infection is dependent on an efficient interferon gamma response. However, the earliest steps of immune response initiation immediately following exposure to the parasite have not been previously characterized in pigs. Murine and human myeloid cells produce large quantities of interleukin (IL)-12 during early T. gondii infection. We therefore examined IL-12 expression by porcine peripheral blood monocytes and dendritic cell (DC) subsets following toll-like receptor (TLR) ligation and controlled T. gondii tachyzoite infection. We detected IL-12p40 expression by porcine plasmacytoid DC, but not conventional or monocyte-derived DC following TLR ligation. Unexpectedly, we also observed considerable IL-12p40 production by porcine CD3- NKp46+ cells-a classical natural killer cell phenotype-following TLR ligation. However, in response to T. gondii exposure, no IL-12 production was observed by either DC or CD3- NKp46+ cells. Despite this, IL-18 production by DC-enriched peripheral blood mononuclear cells was detected following live T. gondii tachyzoite exposure. Only combined stimulation of porcine peripheral blood mononuclear cells with recombinant IL-12p70 and IL-18 induced innate interferon gamma production by natural killer cells, while T cells and myeloid cells did not respond. Therefore, porcine CD3- NKp46+ cells serve as important IL-12 producers following TLR ligation, while IL-18 likely plays a prominent role in early immune response initiation in the pig following T. gondii infection.

19.
Front Immunol ; 12: 734153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484245

RESUMO

Background: Microbial colonization and immune cell maturation coincide at mucosal sites and are decisive for postnatal lung development. How external factors influence neonatal pulmonary immune development is poorly understood. Objective: To elucidate the impact of key determinants in early life, nutrition, and maternal bonding, on postnatal lung maturation in a human-relevant animal model. To investigate the underlying immunological changes of impaired lung maturation and study the mechanisms of conversion. Methods: Newborn piglets were kept with or without isolation from their mothers and fed bovine milk-based infant formula or received milk of sow. Lung growth, histomorphology, respiratory immune responses, and lung microbiota were analyzed. Mother- and sow-milk-deprived piglets received maternal material or were reintroduced to the maternal environment at varying intervals to study options for reversal. Results: Formula feeding combined with isolation of newborn piglets resulted in disturbed postnatal lung maturation. Reduced lung growth correlated with dampened IL-33 expression, impaired lung myeloid cell activation, and decreased Th1 differentiation, along with diminished richness and diversity of the lung microbiota. Transfer of bacteria-enriched maternal material reversed the negative effects on pulmonary immune maturation. Early (within 3 days) but not late (within 7 days) reintroduction to the mother allowed restoration of normal lung development. Conclusion: Our findings reveal that lung growth, respiratory immunity, and microbial lung colonization in newborns depend on postnatal diet and maternal contact, and targeting these key regulators could promote lung development during this critical life stage. Summary: Disturbances in natural diet and reduced maternal contact during the neonatal period impair postnatal lung maturation. In pediatrics, timely breast milk feeding and intensive maternal bonding represent valuable intervention measures to promote early postnatal lung development.


Assuntos
Pulmão/fisiologia , Mucosa/fisiologia , Células Mieloides/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Dieta , Feminino , Humanos , Fórmulas Infantis , Interleucina-33/metabolismo , Comportamento Materno , Microbiota , Leite , Fenômenos Fisiológicos da Nutrição , Organogênese , Cuidado Pós-Natal , Suínos
20.
Life (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572978

RESUMO

Considering their potent immunomodulatory properties, therapeutic applications of Trichuris suis ova (TSO) are studied as potential alternative treatment of autoimmune disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), or inflammatory bowel disease (IBD). Clinical phase 1 and 2 studies have demonstrated TSO treatment to be safe and well tolerated in MS patients, however, they reported only modest clinical efficacy. We therefore addressed the cellular and humoral immune responses directed against parasite antigens in individual MS patients receiving controlled TSO treatment (2500 TSO p.o. every 2 weeks for 12 month). Peripheral blood mononuclear cells (PBMC) of MS patients treated with TSO (n = 5) or placebo (n = 6) were analyzed. A continuous increase of serum IgG and IgE antibodies specific for T. suis excretory/secretory antigens was observed up to 12 months post-treatment. This was consistent with mass cytometry analysis identifying an increase of activated HLA-DRhigh plasmablast frequencies in TSO-treated patients. While stable and comparable frequencies of total CD4+ and CD8+ T cells were detected in placebo and TSO-treated patients over time, we observed an increase of activated HLA-DR+CD4+ T cells in TSO-treated patients only. Frequencies of Gata3+ Th2 cells and Th1/Th2 ratios remained stable during TSO treatment, while Foxp3+ Treg frequencies varied greatly between individuals. Using a T. suis antigen-specific T cell expansion assay, we also detected patient-to-patient variation of antigen-specific T cell recall responses and cytokine production. In summary, MS patients receiving TSO treatment established a T. suis-specific T- and B-cell response, however, with varying degrees of T cell responses and cellular functionality across individuals, which might account for the overall miscellaneous clinical efficacy in the studied patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA